text-only page produced automatically by Usablenet Assistive Skip all navigation and go to page content Skip top navigation and go to directorate navigation Skip top navigation and go to page navigation
National Science Foundation
Awards
design element
Search Awards
Recent Awards
Presidential and Honorary Awards
About Awards
Grant Policy Manual
Grant General Conditions
Cooperative Agreement Conditions
Special Conditions
Federal Demonstration Partnership
Policy Office Website



Award Abstract #0324542

Collaborative Research: Behavior of Braced Steel Frames With Innovative Bracing Schemes - A NEES Collaboratory Project

NSF Org: CMMI
Div Of Civil, Mechanical, & Manufact Inn
divider line
Initial Amendment Date: September 4, 2003
divider line
Latest Amendment Date: July 13, 2005
divider line
Award Number: 0324542
divider line
Award Instrument: Continuing grant
divider line
Program Manager: Mahendra P. Singh
CMMI Div Of Civil, Mechanical, & Manufact Inn
ENG Directorate For Engineering
divider line
Start Date: September 1, 2003
divider line
End Date: August 31, 2007 (Estimated)
divider line
Awarded Amount to Date: $218,420.00
divider line
Investigator(s): Roberto Leon rleon@vt.edu (Principal Investigator)
Reginald DesRoches (Co-Principal Investigator)
divider line
Sponsor: Georgia Tech Research Corporation
Office of Sponsored Programs
Atlanta, GA 30332-0420 (404)894-4819
divider line
NSF Program(s): Structural and Architectural E
divider line
Program Reference Code(s): 1057, CVIS
divider line
Program Element Code(s): 1637

ABSTRACT

PI: Leon. Georgia Tech

The 1994 Northridge and 1995 Kobe earthquakes showed that new technologies and structural configurations are needed to limit damage to steel structures subjected to moderate and large ground motions. In this context, the need to provide additional stiffness to modern frame configurations is clear, leading to a renewed interest in braced frame configurations. Braced frames, however, are regarded as not being very ductile because buckling of individual braces quickly leads to formation of story mechanisms. The additional need for stiffness and ductility for modern structures is compounded by the trends towards lighter structures, more compact lateral-load resisting systems and the advent of performance-based design.

To solve the traditional problems associated with conventional braced frames, a new class of bracing systems, known as a zipper frames, will be developed and tested as part of this proposed work. This proposal represents the first phase of a two-phase collaborative approach to the problem. In the experimental portion of the first phase, four laboratories (Georgia Tech (GT), U. at Buffalo (UB), U. of California at Berkeley (UCB), and the U. of Colorado at Boulder (CU)) will conduct studies on the behavior of whole systems, subassemblages, and individual elements. These will be tested under a variety of load regimes, ranging from shake table tests to quasi-static ones, in order to provide comprehensive data on which to base design recommendations. In the analytical part of the first phase, the four universities listed above, plus Florida A&M (FAMU) and Imperial College-London (IC), will conduct extensive analytical studies to provide (1) a basis and a complement to the experimental work, (2) a testbed for the NEESgrid portion of the NEES Consortium, and (3) new, simplified and comprehensive models for use in design. As the final task for the first phase, GT and FAMU researchers will develop the proposal for the second phase, which will deal with the use of advanced materials and active controls in braced steel structures.

The intellectual merit in the proposed research is that it will provide a unique database of information on the behavior of zipper frames, and will provide results from proof-of-concept studies on a new class of bracing systems. In addition, the research will lead to the development of analytical models that can be implemented into existing seismic analysis programs. The research will develop analytical tools and methodologies to allow practicing engineers to determine potential benefits of a variety of applications of zipper frames.

The project also intends provide initial shakedown studies for the NEES Consortium and in particular to test the flexibility and robustness of the NEESgrid system. In addition, it will provide valuable lessons from both the logistical and technical standpoints for future NEES collaborations. The project will link three NEES sites, one well-established program (GT), one developing program (FAMU) and international partner (IC) as a test case for future grand challenge collaborations. The project has been divided into two phases so that two younger remote researchers (Dr. DesRoches from GT and Dr. Abdullah from FAMU) will benefit from the work on the first phase in order to develop the technical expertise in pseudo-dynamic and shake table testing that they will need for the second phase. This intends to be a model for future NEES projects in which researchers from remote sites will be able to gain valuable experience and mentoring from established researchers/sites.

The research proposed depends strongly on the collaboration between researchers at five sites. To fully maximize the potential impact of this project, a strong education component of the program is proposed. To complement the collaborative research program, that includes a very large exchange of graduate students, a NEES undergraduate research program will be developed. The program will consist of three components; an undergraduate research experience at the sites, a summer undergraduate research exchange program, and a 2-day student symposium. Students from traditionally underrepresented groups will be specifically targeted for the undergraduate research program. The broader impact of the proposed research is that is will provide important information for the design community on the performance of braced frame construction. In addition, the proposed study will serve as a model for future collaborative research using NEES.

BOOKS/ONE TIME PROCEEDING

Leon, R.T. and Yang, C.-S.. "Special Inverted-V-Braced Frames with Suspended Zipper Struts", 09/01/2003-09/01/2004, , Tsai, K.-C. and Liu, G.-L. 2003, "Proceedings of the International Workshop on Steel and Concrete Composite Structures (IWSCCC-2003), NCREE-03-26, National Center for Research on Earthquake Engineering.".

Leon, R.T. and Yang, C.-S.. "Special Inverted-V-Braced Frames with Suspended Zipper Struts", 09/01/2004-09/01/2005, , Tsai, K.-C. and Liu, G.-L. 2003, "Proceedings of the International Workshop on Steel and Concrete Composite Structures (IWSCCC-2003), NCREE-03-26, National Center for Research on Earthquake Engineering.".

ROBERTO LEON, CHUANG-SHENG YANG, REGINALD DesROCHES, ANDREI REINHORN, MACARENA SCHACHTER, BOZIDAR STOJADINOVIC, TONY YANG, BENSON SHING AND ZHONG WEI. "RESULTS OF EARLY COLLABORATIVE RESEARCH ON BEHAVIOR OF BRACED STEEL FRAMES WITH INNOVATIVE BRACING SCHEMES (ZIPPER FRAMES)", 09/01/2004-09/01/2005, "ADVANCES IN EXPERIMENTAL STRUCURAL ENGINEERING",  2005, "Proceedings of an international conference, Nagoya, Japan, July 21-23, 2005. Proceedings published by NAGOYA UNIVERSITY".

Leon, R.T. and Yang, C.-S.. "Special Inverted-V-Braced Frames with Suspended Zipper Struts", 09/01/2006-08/31/2007, , Tsai, K.-C. and Liu, G.-L."Proceedings of the International Workshop on Steel and Concrete Composite Structures (IWSCCC-2003),",  2003, "NCREE-03-26, National Center for Research on Earthquake Engineering, Taipei (Taiwan)".

Leon, R.T., Yang, C.-S., DesRoches, R., Reinhorn, A., Schachter, M., Stojadinovic, B., Yang, T., Shing, B., and Wei, S.. "Results of Early Collaborative Research on Behavior of Braced Steel Frames with Innovative Bracing Schemes", 09/01/2006-08/31/2007, , Itoh, Y. and Aoki, T."Proceedings of the First International Conference on Advances in Experimental Structural Engineering.",  2005, "Nagoya University, Nagoya, Japan, July 21-23, 2005. (ISBN4-901887-18-1)".

Yang, C.-S., Leon, R. T., and DesRoches, R.. "Smart Zipper Frames", 09/01/2006-08/31/2007, "Proceedings of the Second International Conference on Advances in Experimental Structural Engineering.",  2007, "Lu, X. (ed.,) Tonji University, Shanghai, Dec 4-6".

Yang, C.-S., Leon, R.T., and DesRoches, R.. "Design of Zipper Frames", 09/01/2006-08/31/2007, , Wallace, J.W."2007 Structures Congress: Structural Engineering Research Frontiers",  2007, "SEI/ASCE 2007 Structures Congress, ISBN-13: 978-0-7844-0810-0".

Yang, C.-S., Leon, R.T., and DesRoches, R.. "On the Development of Zipper Frames by Pushover Testing", 09/01/2006-08/31/2007, , Federico M. Mazzolani and Akira Wada (eds.)"STESSA 2006: Behavior of Steel Structures in Seismic Areas",  2006, "Taylor and Francis, London, pp. 555-564".

Yang, C.-S., Leon, R.T., and DesRoches, R.. "On the Development of Zipper Frames by Quasi-static Testing and Pushover Analyses.", 09/01/2006-08/31/2007, "Managing Risk in Earthquake Country: The 100th Anniversary Earthquake Conference,April 18-22, 2007, San Francisco, USA.",  2006, "EERI".

 

Please report errors in award information by writing to: awardsearch@nsf.gov.

 

 

Print this page
Back to Top of page
  FUNDING   AWARDS   DISCOVERIES   NEWS   PUBLICATIONS   STATISTICS   ABOUT NSF   FASTLANE  
Research.gov  |  USA.gov  |  National Science Board  |  Recovery Act  |  Budget and Performance  |  Annual Financial Report
Web Policies and Important Links  |  Privacy  |  FOIA  |  NO FEAR Act  |  Inspector General  |  Webmaster Contact  |  Site Map
National Science Foundation Logo
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
  Text Only Version