text-only page produced automatically by Usablenet Assistive Skip all navigation and go to page content Skip top navigation and go to directorate navigation Skip top navigation and go to page navigation
National Science Foundation
Awards
design element
Search Awards
Recent Awards
Presidential and Honorary Awards
About Awards
Grant Policy Manual
Grant General Conditions
Cooperative Agreement Conditions
Special Conditions
Federal Demonstration Partnership
Policy Office Website



Award Abstract #0922979

MRI: Development of a Dynamically Adaptive Autonomous Antarctic Low-Power Geophysical Instrument Array for Space Science Research and Education

NSF Org: AGS
Div Atmospheric & Geospace Sciences
divider line
Initial Amendment Date: August 20, 2009
divider line
Latest Amendment Date: December 20, 2011
divider line
Award Number: 0922979
divider line
Award Instrument: Standard Grant
divider line
Program Manager: Therese Moretto Jorgensen
AGS Div Atmospheric & Geospace Sciences
GEO Directorate For Geosciences
divider line
Start Date: August 15, 2009
divider line
End Date: July 31, 2015 (Estimated)
divider line
Awarded Amount to Date: $1,999,999.00
divider line
Investigator(s): Calvin Robert Clauer rclauer@vt.edu (Principal Investigator)
Tamal Bose (Co-Principal Investigator)
Joseph Baker (Co-Principal Investigator)
Brent Ledvina (Co-Principal Investigator)
Majid Manteghi (Co-Principal Investigator)
divider line
Sponsor: Virginia Polytechnic Institute and State University
Sponsored Programs 0170
BLACKSBURG, VA 24061-0001 (540)231-5281
divider line
NSF Program(s): MAJOR RESEARCH INSTRUMENTATION
divider line
Program Reference Code(s): 0000, 1189, 4202, OTHR, 4444
divider line
Program Element Code(s): 1189

ABSTRACT

An interdisciplinary team of space scientists, computer scientists, and engineers will develop, test, and deploy a network of autonomous and dynamically adaptive, low-power geophysical measurement stations along the 40 degree magnetic meridian in the Antarctic. The network will consist of five new stations to be developed and manufactured over a four-year period. The goal is to provide an autonomous, low-power instrument platform capable of remote unattended operations in the Antarctic for at least three years. Each of the platforms will support a fluxgate magnetometer, an induction coil magnetometer, and a dual frequency GPS receiver. The new capabilities to be developed include (1) incorporation of an innovative new software-defined-radio based dual frequency GPS receiver capable of measuring ionospheric total electron content and scintillation characteristics, (2) dynamic adaptive data mining, (3) inter-station communication and dynamically adaptive data collection strategies, (4) a flexible interface to connect other low-power geophysical instruments, and (5) alternative satellite data retrieval and system control options.

Scientific motivation for the network is driven by the value of establishing a magnetically conjugate chain to the already existing chain of magnetic observatories operated by the Danish Meteorological Institute along the west coast of Greenland. The conjugate arrays will enable global (from the Antarctic to the nominally conjugate regions in the Arctic) investigations of the complex, multi-scale, electro-dynamic system that comprises the space environment of Planet Earth. Transformative science is likely to result from these new data sets that enable the development of our understanding of the fully coupled solar wind - magnetosphere - ionosphere - atmosphere system that incorporates both hemispheres realistically. This is the next major step required in the development of global space weather models, and the observations that will be provided from this new facility are fundamental to the adequate validation of these models.

Among its broader impacts, the new instrument platform will be of great value to other Polar geophysical measurement programs. The network will contribute data that are important to several major research initiatives of national importance including the NSF GEM, CEDAR programs, the National Space Weather Program, the NASA Living With a Star program, and the NASA THEMIS satellite program. Space weather affects a variety of technologies on which society relies, and there are increasing needs for reliable and accurate now-casts and forecasts of Space Weather. The data obtained from the network will be made available to researchers and students worldwide via web access through the Polar Experimental Network for Geospace Upper-atmosphere Investigations (PENGUIn) data portal. The project has an Education and Outreach component that, amongst others, will host 2 undergraduate students from minority institutions each summer to participate in the project. Graduate students will be employed by the project and mentored by the investigators on the project thus helping to prepare the next generation of geophysical scientists and engineers.


PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH

Note:  When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


Clauer, C. Robert, Hyomin Kim, Kshitija Deshpande, Zhonghua Xu, Daniel Weimer, Stephen Musko, Geoff Crowley, Chad Fish, Randall Nealy, T. E. Homphreys, J. A. Bhatti, A. J. Ridley. "Autonomous adaptive low-power instrument platform (AAL-PIP) for remote high latitude geospace data collection," Geosci. Instrum. Method. Data Syst., 2014.

Kim, H. X. Cai, C. R. Clauer, B. S. R. Kulduri, J. Matzka, C. Stolle, and D. R. Weimer. "Geomagnetic response to solar wind dynamic pressure impulse events at high-latitutde conjugate points," J. Geophys. Res., v.118, 2013. 

Deshpande, K. B.; Bust, G. S.; Clauer, C. R.; Kim, H.; Macon, J. E.; Humphreys, T. E.; Bhatti, J. A.; Musko, S. B.; Crowley, G.; Weatherwax, A. T.. "Initial GPS scintillation results from CASES receiver at South Pole, Antarctica," RADIO SCIENCE, v.47, 2012, p. 10. 

Kim, H., C. R. Clauer, K. Deshpande, M. R. Lessard, A. T. Weatherwax, G. S. Bust, G. Crowley, and T. E. Humphreys. "Ionospheric irregularities at substorm onset: Observations of ULF pulsations and GPS scintillations," J. Atmos. Solar-Terr. Phys., v.99, 2014, p. 1 - 8. 

BOOKS/ONE TIME PROCEEDING

Growley, Geoff, Gary S. Bust, Adam
Reynolds, Irfan Azeem, Rick Wilder,
Brady W. O'Hanlon, Mark L. Psiaki,
Steven Powell, Todd E. Humphries,
Jahshan A. Bhatti, Kshitija Deshpande,
Robert Clauer. "CASES: A Novel Low-Cost Ground-based
Dual-Frequency GPS Software Receiver
and Space Weather Moniotor", 08/01/2011-07/31/2012,  2012, "Presented at the Institute of Navigation
(ION) Joint Navigation Conference (JNC),
Colorado Springs".

 

Please report errors in award information by writing to: awardsearch@nsf.gov.

 

 

Print this page
Back to Top of page
  FUNDING   AWARDS   DISCOVERIES   NEWS   PUBLICATIONS   STATISTICS   ABOUT NSF   FASTLANE  
Research.gov  |  USA.gov  |  National Science Board  |  Recovery Act  |  Budget and Performance  |  Annual Financial Report
Web Policies and Important Links  |  Privacy  |  FOIA  |  NO FEAR Act  |  Inspector General  |  Webmaster Contact  |  Site Map
National Science Foundation Logo
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
  Text Only Version