text-only page produced automatically by Usablenet Assistive Skip all navigation and go to page content Skip top navigation and go to directorate navigation Skip top navigation and go to page navigation
National Science Foundation
Awards
design element
Search Awards
Recent Awards
Presidential and Honorary Awards
About Awards
Grant Policy Manual
Grant General Conditions
Cooperative Agreement Conditions
Special Conditions
Federal Demonstration Partnership
Policy Office Website



Award Abstract #1241881

Collaborative Research: Building Forest Management into Earth System Modeling: Scaling from Stand to Continent

NSF Org: EF
Emerging Frontiers
divider line
Initial Amendment Date: March 21, 2013
divider line
Latest Amendment Date: March 21, 2013
divider line
Award Number: 1241881
divider line
Award Instrument: Standard Grant
divider line
Program Manager: Elizabeth R. Blood
EF Emerging Frontiers
BIO Direct For Biological Sciences
divider line
Start Date: June 1, 2013
divider line
End Date: May 31, 2017 (Estimated)
divider line
Awarded Amount to Date: $336,536.00
divider line
Investigator(s): Christina Staudhammer cstaudhammer@ua.edu (Principal Investigator)
Gregory Starr (Co-Principal Investigator)
Paul Duffy (Co-Principal Investigator)
divider line
Sponsor: University of Alabama Tuscaloosa
801 University Blvd.
Tuscaloosa, AL 35487-0005 (205)348-5152
divider line
NSF Program(s): MACROSYSTEM BIOLOGY
divider line
Program Reference Code(s): 7959, 9150
divider line
Program Element Code(s): 7959

ABSTRACT

Although there are many theories that explain how forests function at the stand level, there is a lack of understanding of how these theories scale to larger areas subject to different disturbances, such as hurricanes or harvests, which cause temporary change in environmental conditions. Management of forest resources has been guided by ecological theories that simplify disturbance, management, and climate impacts on forests, but feedbacks from management are seldom considered to influence function. This observation leads to an important question: How does knowledge from studies of areas measured in meters or kilometers apply to much more heterogeneous regional areas, within which human activities are becoming the most significant determinants of functional responses to disturbances? This proposed research aims to develop a framework for building forest management into Earth system modeling to test whether stand-level ecological theories hold in larger areas across different regions of the continental US. The goal is to determine how variations in forest management, climate, and disturbance impact forest ecosystems, and quantify the relative importance of forest management, climate, and disturbance as drivers of ecosystem structure and function at stand to continental scales. Initial spatial data on land ownership and use, forest management, disturbances, climate, and vegetation characteristics will be obtained for two regions of the US with significant management activity: the Southeast and Pacific Northwest. The project will map management, disturbances, and environmental characteristics overlain on forest types. An ecosystem model will be modified and parameterized to generate estimates of carbon, water, and forest structure characteristics under various management and climate scenarios in order to investigate if the macrosystem behaves similarly or as the aggregate of the mosaic of different stages of succession, management, disturbance, and climate change scenarios.

This continental-scale analysis of management, disturbance, and climatic effects on forest structure and function will lead ecologists and forest resource managers towards improved stewardship of forest resources. This project will make substantive contributions in developing methods for appropriate scale determination and management mapping, and demonstrate how management methods affect forest ecology. Moreover, new frameworks and improvements will be made to improve existing ecosystem models. This project will improve ecological theory of succession to better inform forest management, which will help in evaluating forest feedbacks on climatic patterns. Research data products will made available to forest managers via outreach activities, including field-based workshops. The greatest significance of this project will be to design new research approaches and contribute to training a new generation of scientists through graduate research and cross-disciplinary post-doctoral training with multi-institution lab rotations. The project will improve our understanding of the interactions of forest management at larger scales with disturbance regimes and climate change influences, as well as how management activities might mitigate some of those influences.


PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH

Note:  When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


Sebastiaan Luyssaert,
Mathilde Jammet,
Paul C. Stoy,
Stephan Estel,
Julia Pongratz,
Eric Ceschia,
Galina Churkina,
Axel Don,
KarlHeinz Erb,
Morgan Ferlicoq,
Bert Gielen,
Thomas Grünwald,
Richard. "Land management and land-cover change have impacts of similar magnitude on surface temperature," Nature Climate Change, 2014. 

Becknell, J., A. Desai, M. Dietze, G. Starr, J. Franklin, A. Pourmokhtarian, J. Hall, P. Stoy, P. Duffy, M. Binford, L. Boring, and J. Hall, and C. Staudhammer,. "Assessing the effects of interactions among changing climate, management, and disturbance on forests: A macrosystems approach," Bioscience, v.65, 2015, p. 263. 

Dietze M. and J. Hatala Matthes. "A general ecophysiological framework for modeling the impact of pests and pathogens on forest ecosystems," Ecology Letters, v.17, 2014, p. 1418. 

Hall, J.M., C.G. Staub, M. Marsik, F. Stevens, M.W. Binford. "Scaling categorical spatial data for Earth systems models," Global Change Biology, v.21, 2014, p. 1. 

Stoy P.C., Quaife T. "Probabilistic downscaling of remote sensing data with applications for multi-scale flux modeling," PLoS One, v.10, 2015, p. e0128935. 

Christian, B.A., Joshi, N.C., Saini, M.J., Mehta, N.K., Goroshi, S., Nidamanuri, R.R., Thenkabail, P., Desai, A.R., Nadiminti, K.. "Seasonal variations in GPP of a tropical deciduous forest from MODIS and Hyperion," Agricultural and Forest Meteorology, v.214-215, 2015, p. 91. 

 

Please report errors in award information by writing to: awardsearch@nsf.gov.

 

 

Print this page
Back to Top of page
  FUNDING   AWARDS   DISCOVERIES   NEWS   PUBLICATIONS   STATISTICS   ABOUT NSF   FASTLANE  
Research.gov  |  USA.gov  |  National Science Board  |  Recovery Act  |  Budget and Performance  |  Annual Financial Report
Web Policies and Important Links  |  Privacy  |  FOIA  |  NO FEAR Act  |  Inspector General  |  Webmaster Contact  |  Site Map
National Science Foundation Logo
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
  Text Only Version