text-only page produced automatically by Usablenet Assistive Skip all navigation and go to page content Skip top navigation and go to directorate navigation Skip top navigation and go to page navigation
National Science Foundation
design element
Search Awards
Recent Awards
Presidential and Honorary Awards
About Awards
Grant Policy Manual
Grant General Conditions
Cooperative Agreement Conditions
Special Conditions
Federal Demonstration Partnership
Policy Office Website

Award Abstract #1302375

SHF:Medium:Collaborative Reseach: Electrical-thermal Co-Design of Microfluidically-Cooled 3D IC's

Division of Computing and Communication Foundations
divider line
Initial Amendment Date: September 11, 2013
divider line
Latest Amendment Date: September 11, 2013
divider line
Award Number: 1302375
divider line
Award Instrument: Standard Grant
divider line
Program Manager: Almadena Y. Chtchelkanova
CCF Division of Computing and Communication Foundations
CSE Direct For Computer & Info Scie & Enginr
divider line
Start Date: September 15, 2013
divider line
End Date: August 31, 2017 (Estimated)
divider line
Awarded Amount to Date: $464,720.00
divider line
Investigator(s): Ankur Srivastava ankurs@eng.umd.edu (Principal Investigator)
divider line
Sponsor: University of Maryland College Park
3112 LEE BLDG 7809 Regents Drive
COLLEGE PARK, MD 20742-5141 (301)405-6269
divider line
divider line
Program Reference Code(s): 7924, 7945
divider line
Program Element Code(s): 7945


The technical goal of this project is to develop and refine the micro-fluidic 3D IC cooling technology. While 3D integration offers significant potential for improving the performance, energy efficiency and functionality of electronic systems, the problem of heat removal is significantly exacerbated. Conventional air cooling alone would be incapable of addressing the future 3D IC heat removal requirements. In this project, the PIs are investigating use of aggressive micro-fluidic cooling technology for cooling 3D ICs. The team comprises researchers from University of Maryland and Georgia Institute of Technology. The Georgia Tech team would bring forth significant expertise in fabrication and modeling of 3D ICs with interlayer micro-fluidic cooling. The Maryland team will bring forth expertise in VLSI design methodologies. The primary focus of this proposal is: development of techniques and tools for co-design of micro-fluidic embedded cooling and electrical aspects of 3D ICs.

This proposal would directly support several PhD students in different disciplines. Because of the cross disciplinary nature of this proposal, these students would need to learn diverse set of topics pertaining to fluidics, chip design and thermal management. Undergraduates will also be involved through various programs at Georgia Tech and Maryland. The outcomes of this research will be published in respectable venues in both electrical/computer engineering and mechanical engineering. The tools, models and experimental data will also be made available on the web. The PIs plan to organize tutorials at various conferences and educational forums. Special emphasis will be givenon minority involvement via collaboration with local HBCUs.


Please report errors in award information by writing to: awardsearch@nsf.gov.



Print this page
Back to Top of page
Research.gov  |  USA.gov  |  National Science Board  |  Recovery Act  |  Budget and Performance  |  Annual Financial Report
Web Policies and Important Links  |  Privacy  |  FOIA  |  NO FEAR Act  |  Inspector General  |  Webmaster Contact  |  Site Map
National Science Foundation Logo
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
  Text Only Version