text-only page produced automatically by Usablenet Assistive Skip all navigation and go to page content Skip top navigation and go to directorate navigation Skip top navigation and go to page navigation
National Science Foundation
design element
Search Awards
Recent Awards
Presidential and Honorary Awards
About Awards
Grant Policy Manual
Grant General Conditions
Cooperative Agreement Conditions
Special Conditions
Federal Demonstration Partnership
Policy Office Website

Award Abstract #1320428

CIF: Small: Collaborative Research:Security in Dynamic Environments: Harvesting Network Randomness and Diversity

Division of Computing and Communication Foundations
divider line
Initial Amendment Date: July 22, 2013
divider line
Latest Amendment Date: June 9, 2016
divider line
Award Number: 1320428
divider line
Award Instrument: Standard Grant
divider line
Program Manager: Richard Brown
CCF Division of Computing and Communication Foundations
CSE Direct For Computer & Info Scie & Enginr
divider line
Start Date: August 1, 2013
divider line
End Date: July 31, 2017 (Estimated)
divider line
Awarded Amount to Date: $175,817.00
divider line
Investigator(s): Jing Deng jing.deng@uncg.edu (Principal Investigator)
divider line
Sponsor: University of North Carolina Greensboro
1111 Spring Garden Street
GREENSBORO, NC 27412-5013 (336)334-5878
divider line
Secure &Trustworthy Cyberspace
divider line
Program Reference Code(s): 7434, 7923, 7935, 9150, 9251
divider line
Program Element Code(s): 7797, 7935, 8060


The project aims at quantifying a general network's inner potential for supporting various forms of security by achieving secret common randomness between pairs or groups of its nodes. Statistical and computational secrecy measures are being considered against a general passive adversary. Common-randomness-achieving protocols are classified into two groups: culture-building and crowd-shielding. The former achieves common randomness between nodes situated in close proximity of each other, from correlated observations of specific (natural or induced) network phenomena. The latter ties together the security of multiple communication links, to the point where an adversary can no longer isolate and attack a single link without attacking the group as a whole. The broad range of investigated protocols cover multiple topics, from multipath diversity to network tomography, from secure network coding to protocol coding, and from anonymous routing to the spread of epidemics. The protocols harvest network randomness from diverse sources like ciphertext blocks originating at various terminals, contention protocols (delay randomness) or network topology (in highly-dynamic, or ad-hoc networks).

Communication networks are naturally dynamic, inherently redundant, and largely unpredictable. While the former two features have long been recognized as a valuable resource for integrity, efficiency and confidentiality, network unpredictability is often regarded as an incommodity. This project shows how network randomness can be harvested, and, together with diversity, exploited to enhance communication security. In doing so, it develops a more profound understanding about the statistical nature of networks, which can be applied to a broad range of information-assurance objectives. The technical approaches and the general philosophy developed in this project, and disseminated through conferences and seminars, have the potential to inspire an abundance of related research. The project will directly impact dozens of students through Senior Design projects, a research-and-open-project approach to curriculum development, and three new graduate courses containing related topics. The PIs are actively involved in programs aimed at increasing the involvement of women, underrepresented minorities, and persons with disabilities in engineering and computing sciences.


Please report errors in award information by writing to: awardsearch@nsf.gov.



Print this page
Back to Top of page
Research.gov  |  USA.gov  |  National Science Board  |  Recovery Act  |  Budget and Performance  |  Annual Financial Report
Web Policies and Important Links  |  Privacy  |  FOIA  |  NO FEAR Act  |  Inspector General  |  Webmaster Contact  |  Site Map
National Science Foundation Logo
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
  Text Only Version