text-only page produced automatically by Usablenet Assistive Skip all navigation and go to page content Skip top navigation and go to directorate navigation Skip top navigation and go to page navigation
National Science Foundation
Awards
design element
Search Awards
Recent Awards
Presidential and Honorary Awards
About Awards
Grant Policy Manual
Grant General Conditions
Cooperative Agreement Conditions
Special Conditions
Federal Demonstration Partnership
Policy Office Website



Award Abstract #1325676

Coastal SEES (Track 2), Collaborative: Developing High Performance Green Infrastructure Systems to Sustain Coastal Cities

NSF Org: CMMI
Div Of Civil, Mechanical, & Manufact Inn
divider line
Initial Amendment Date: September 5, 2013
divider line
Latest Amendment Date: April 10, 2015
divider line
Award Number: 1325676
divider line
Award Instrument: Continuing grant
divider line
Program Manager: Richard J. Fragaszy
CMMI Div Of Civil, Mechanical, & Manufact Inn
ENG Directorate For Engineering
divider line
Start Date: September 15, 2013
divider line
End Date: August 31, 2018 (Estimated)
divider line
Awarded Amount to Date: $2,594,009.00
divider line
Investigator(s): Patricia Culligan culligan@civil.columbia.edu (Principal Investigator)
Plunz Richard (Co-Principal Investigator)
Wade McGillis (Co-Principal Investigator)
Michael Gerrard (Co-Principal Investigator)
Gregory Yetman (Co-Principal Investigator)
Mark Becker (Former Co-Principal Investigator)
divider line
Sponsor: Columbia University
2960 Broadway
NEW YORK, NY 10027-6902 (212)854-6851
divider line
NSF Program(s): SEES Coastal
divider line
Program Reference Code(s): 036E, 1057, 8020, 9102
divider line
Program Element Code(s): 8088

ABSTRACT

Discharge of wastewater, sewerage and runoff from coastal cities remains the dominant sources of coastal zone pollution. The impervious nature of modern cities is only exacerbating this problem by increasing runoff from city surfaces, triggering combined sewer overflow events in cities with single-pipe wastewater conveyance systems and intensifying urban flooding. Many coastal cities, including US cities like Seattle, New York and San Francisco, are turning to urban green infrastructure (GI) to mitigate the city's role in coastal zone pollution. Urban GI, such as green roofs, green streets, advanced street-tree pits, rainwater gardens and bio-swales, introduce vegetation and perviousness back into city landscapes, thereby reducing the volume and pollutant loading of urban runoff. Urban GI, however, also has co-benefits that are equally important to coastal city sustainability. For example, increasing vegetation and perviousness within city boundaries can help cool urban environments, trap harmful air-borne particulates, increase biodiversity and promote public health and well-being. Despite the significance of these co-benefits, most current urban GI programs still focus on achieving volume reduction of storm water through passive detention and retention of rainfall or runoff. Holistic approaches to GI design that consider multiple sustainability goals are rare, and real time monitoring and active control systems that help ensure individual or networked GI meet performance goals over desired time-scales are lacking. Furthermore, how city inhabitants view, interact with, and value GI is little studied or accounted for in current urban GI programs. This project will develop and test a new framework for the next generation of urban GI that exploits the multi-functionality of GI for coastal city sustainability, builds a platform for real-time monitoring and control of urban GI networks, and takes account of the role of humans in GI stewardship and long-term functionality. The project will use the Bronx River Sewershed in New York City, where a $20 million investment in GI is planed over the next 5-years, as its living test bed. GI has its roots in several disciplines, and the project brings together expertise from these disciplines, including civil and environmental engineering, environmental science, and plant science/ horticulture. In addition, the project integrates expertise from other disciplines needed to elevate GI performance to the next level, including urban planning and design, climate science, data science, environmental microbiology, environmental law and policy, inter-agency coordination, community outreach and citizen science.

The specific outcomes of the project will include: (i) new, scientific data on the holistic, environmental performance of different GI interventions in an urban, coastal environment; (ii) new models for the system level performance of networks of GI interventions; (iii) methodologies for projecting GI performance under a changing climate; (iv) a platform for remote monitoring and control of GI; (v) proposals for law and policy changes to enable US coastal cities to introduce GI at scales necessary to meet sustainability goals, and (vi) new understanding of human-GI interactions and their role in the long-term performance and maintenance of urban GI. Engagement with schools in the Bronx River Sewershed and engagement of citizens in the GI performance monitoring are both important components of the project work. The interdisciplinary project team integrates academic expertise with expertise in industry, government and non-profit organizations.


PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH

Note:  When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


William Solecki, Cynthia Rosenzweig, Reginald Blake, Alex de Sherbinin, Tom Matte, Fred Moshary, Bernice Rosenzweig, Mark Arend, Stuart Gaffin, Elie Bou-Zeid, Keith Rule, Geraldine Sweeny and Wendy Dessy. "New York City Panel on Climate Change 2015 Report Chapter 6: Indicators and Monitoring," Annals of the New York Academy of Sciences, v.1336, 2015, p. 89. 

 

Please report errors in award information by writing to: awardsearch@nsf.gov.

 

 

Print this page
Back to Top of page
  FUNDING   AWARDS   DISCOVERIES   NEWS   PUBLICATIONS   STATISTICS   ABOUT NSF   FASTLANE  
Research.gov  |  USA.gov  |  National Science Board  |  Recovery Act  |  Budget and Performance  |  Annual Financial Report
Web Policies and Important Links  |  Privacy  |  FOIA  |  NO FEAR Act  |  Inspector General  |  Webmaster Contact  |  Site Map
National Science Foundation Logo
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
  Text Only Version