text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
Materials Research (DMR)
design element
DMR Home
About DMR
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Proposals
Workshops and Reports
Research and Education Highlights
See Additional DMR Resources
View DMR Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional DMR Resources
International Collaboration
Lightsource
DMR Proposal Submission Deadline
Interagency Coordinating Committee on Ceramics Research and Development (ICCCRD)
Broadening Participation
Professional Societies
Links for Kids
Materials Websites
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page
All Images

Discovery
Exploring High-temperature Superconductivity and the Pseudogap

Back to article | Note about images

Illustration showing scanning tunneling microscopy and angle-resolved photo-electron spectroscopy.

Using both scanning tunneling microscopy (STM) and angle-resolved photo-electron spectroscopy (ARPES) gives researchers a more complete understanding of high-temperature superconducting materials. STM can show actual atoms on the material's surface. ARPES uses the photoelectric effect by aiming a beam of light (photons) at the material's surface. The photons excite atoms in the material, causing them to eject electrons, which are then captured by a detector. The momentum (speed and direction) of the ejected electrons gives researchers information about the momentum of the electrons inside the material.

Credit: Nicolle Rager Fuller, National Science Foundation


Download the high-resolution JPG version of the image. (250 KB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.



Email this pagePrint this page
Back to Top of page