text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
Chemistry (CHE)
design element
CHE Home
About CHE
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Highlight Your CHE Award
Become a NSF CHE Reviewer
Newsletters, Dear Colleague Letters, and Workshop Reports
See Additional CHE Resources
View CHE Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional CHE Resources
Image Credits
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page
All Images

Discovery
The Water Dance

Back to article | Note about images

Illustration of sulfur dioxide molecules forming weak bonds with water molecules.

Geraldine Richmond and her team at the University of Oregon were surprised to find that molecules of sulfur dioxide (SO2) in the atmosphere tend to form a weak bond with water molecules at the surface of the liquid before finally submerging, whereas carbon dioxide (CO2) molecules dive right in.

"This is the first time that anyone has ever measured, with this level of molecular detail, a gas-surface complex at the surface of liquid water," Richmond said. "We are now investigating a whole series of important environmental gases, ions and solutes at the water surface."

Credit: Nicolle Rager-Fuller


Download the high-resolution JPG version of the image. (372 KB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.

Photo of Apratim Dhar at the FReI instrument.

Apratim Dhar at the FReI instrument, which is used to study interaction of proteins with solvation water during protein folding in cells.

Credit: Apratim Dhar


Download the high-resolution JPG version of the image. (241 KB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.



Email this pagePrint this page
Back to Top of page