text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Engineering (ENG)
Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
design element
CBET Home
About CBET
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
View CBET Staff
ENG Organizations
Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
Civil, Mechanical and Manufacturing Innovation (CMMI)
Electrical, Communications and Cyber Systems (ECCS)
Engineering Education and Centers (EEC)
Emerging Frontiers in Research and Innovation (EFRI)
Industrial Innovation and Partnerships (IIP)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page
All Images

Discovery
'Smuggling' drugs at the cellular level

Back to article | Note about images

Image of delicate, nested microbubbles.

Liposomes, a fabricated lipid sac filled with water, are prime candidates for drug delivery because they can pass through the skin virtually unnoticed. Shown here are nested microbubbles that pop and split open the liposome to release medicine when exposed to sound or vibrations with an ultrasonic frequency. Drexel University researchers Steven Wrenn and Peter Lewin are trying to expand the possibilities of this system, called transdermal delivery.

Credit: Drexel University

 

Image of microbubbles

Drexel University researchers Steven Wrenn and Peter Lewin are trying to expand the possibilities of a drug delivery system that can penetrate the skin, called transdermal delivery. Microbubbles respond to ultrasound in two ways that are key to making the transdermal delivery. First, they can be pushed by ultrasound at an intensity gentle enough to keep the liposome intact. So, nesting the microbubbles inside a liposome is analogous to raising the sail on a boat to catch the wind. Secondly, when the intensity of the ultrasound is turned up a bit, it causes microbubbles to wobble like a spring and--if the intensity is high enough--pop. Wrenn's group has shown that these gas implosions in the vicinity of the liposome can rip it open, thus allowing disbursal of its contents. A significant advantage of their approach over current transdermal delivery methods is that it could easily be customized to work for a broad array of drugs and other biological products.

Credit: Drexel University

 



Email this pagePrint this page
Back to Top of page