text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Engineering (ENG)
Engineering (ENG)
design element
ENG Home
About ENG
Funding Opportunities
Advisory Committee
Career Opportunities
See Additional ENG Resources
View ENG Staff
ENG Organizations
Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
Civil, Mechanical and Manufacturing Innovation (CMMI)
Electrical, Communications and Cyber Systems (ECCS)
Engineering Education and Centers (EEC)
Emerging Frontiers and Multidisciplinary Activities (EFMA)
Industrial Innovation and Partnerships (IIP)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Merit Review
NSF Outreach
Policy Office
Additional ENG Resources
Advisory Committee Meetings
Career Opportunities
Funding Rates
Budget Excerpt
NSF National Nanotechnology Initiative
Cleaner Water, Clearer Future: Engineering new water tech
High-tech Harvest: Engineering agriculture's future
Height of Light: Progress in lasers and other light sources
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Scientist Explores Invisible Environmental Helpers

Researcher uses his expertise in catalysis to impact major environmental issues

Photo of Professor Israel Wachs with the combined Raman-Infrared spectrometer/microscope.

Professor Israel Wachs with the combined Raman-Infrared spectrometer/microscope.
Credit and Larger Version

April 25, 2008

For most, catalysis is not a household word. But this process--a way to speed up a chemical reaction using a "helper" material that survives largely unscathed--is a major driving force for everything from the petroleum and chemical industries to the understanding of environmental science or the inner workings of our cells.

"Chances are that most of the manufactured goods that you are in contact with right now contain some form of synthetic fiber--your clothes, the shoes on your feet and the carpet just below them," says Israel Wachs, a professor of chemical engineering at Lehigh University in Bethlehem, Pa. "It's likely that all of them have been touched in some manner by catalysis."

Close to 20 percent of the United States' Gross National Product (GNP) involves a product going through a catalytic processing step, according to some estimates.

And yet, when Wachs ran the initial experiments that convinced him to study catalysis at the nanometer (billionths of a meter) scale, he was diving into uncharted waters.

"There were no rules established when we first got into this," recalls Wachs, "no guidelines to follow. It was like not knowing which direction was up, down, left or right."

Wachs is a recognized leader in the study of catalysis. His work has been cited in scientific literature more than 10,000 times throughout his career, thus far. A serious and intense researcher, he is not the kind of person to latch on to the latest fads.

During the 1990s, Wachs became aware, as did many scientists, of the growing buzz around the notion of nanotechnology. At the time, he was skeptical, figuring that 'nano' might simply be the latest trend in the popular-scientific press, the type of thing that would inevitably blow over.

Despite his misgivings, he decided to run a few basic experiments to seek potential nano-applications in the realm of catalysis. The results of these experiments convinced him that 'nano,' in his field, was more than just hype.

These days, Wachs is advancing the science of nanocatalysis with help from a National Science Foundation (NSF) Nanoscale Interdisciplinary Research Team (NIRT) grant that brings him together with collaborators from Lehigh University, Rice University and the University of Virginia. The research has the potential to reduce pollution and impact the environment in a variety of ways.

"Nanotechnology deals with the manipulation of materials of incredibly small dimensions," says Wachs. "At this scale, materials have unique chemical and physical properties not found in their larger counterparts, especially at one nanometer or less."

To give a sense of the scale involved, imagine a strand of human hair. Now, imagine that same hair sliced lengthwise into 80,000 equal parts. The width of one of those slices would be about 1 nanometer.

Wachs maintains a unique research laboratory, the only one of its kind in the United States, which uses a method called "operando molecular spectroscopy." Operando is Latin, meaning operating. Operando spectroscopy allows for molecular-level monitoring of catalysts under realistic conditions that can be studied simultaneously online as catalysis occurs. Wachs has had many breakthroughs, even finding that the use of nanoparticles would actually be counterproductive for some catalytic reactions.

"Electrons behave differently at such a small scale," he says. "So if a catalytic reaction requires a rich source of electrons, the use of nanoparticles is out. On the other hand, catalytic reactions that don't require a rich source of electrons thrive at the nanoscale."

For example, nitrogen oxide (NOX) is a pollutant created in automobiles, at many electric power plants and at other sources. It contributes to a host of problems, from the production of ozone (a greenhouse gas and ground-level pollutant) to acid rain. Wachs and his colleagues are currently trying to develop a nanocatalyst that converts NOX into the benign nitrogen and water.

This is not the first time, however, that Wachs has used his expertise in catalysis to positively impact major environmental issues. One of his three dozen patents is for a traditional catalytic process that converts methanol, a byproduct pollutant of paper mills, into formaldehyde that the mills can then use to make resins for particle board. The pulp mills once released the methanol, along with other harmful chemicals into rivers and streams, resulting in environmental havoc. For the beleaguered paper industry, this, in essence, is the transformation of pollution into profits. In 2002, Wachs received the Clean Air Excellence Award from the Environmental Protection Agency (EPA) for his pioneering work in this area.

-- Chris Larkin, Lehigh University chris.larkin@lehigh.edu

This Behind the Scenes article was provided to LiveScience in partnership with the National Science Foundation.

Israel Wachs

Related Institutions/Organizations
Lehigh University


Related Programs

Related Awards
#0609018 NIRT: Tuning the Electronic and Molecular Structures of Catalytic Active Sites with Oxide Nanoligands

Total Grants

Related Websites
LiveScience.com: Scientists Explore Invisible Environmental Helpers: http://bit.ly/1UNuGTl
Top 10s:Top 10 Emerging Environmental Technologies: http://bit.ly/1TGcfyF
LiveScience Quiz: What's Your Environmental Footprint?: http://www.livescience.com/triviagreenerfuture/
All About Nanotechnology: http://www.livescience.com/nanotechnology/

Transmission electron microscopy image of titanium dioxide rafts on a surface of silica.
Transmission electron microscopy image of titanium dioxide rafts on a surface of silica.
Credit and Larger Version

Photo of Professor Wachs examining an environmental reaction cell into which he places catalysts.
Professor Israel Wachs examines an environmental reaction cell into which he places catalysts.
Credit and Larger Version

Email this pagePrint this page
Back to Top of page