text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
Mathematical & Physical Sciences (MPS)
design element
MPS Home
About MPS
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
2013-2014 Distinguished Lecture Series
View MPS Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Discovery
How to Make Adhesive as Good as a Gecko

Materials scientist Ali Dhinojwala and his team use nanotechnology to develop adhesive tapes that stick better than a gecko’s foot

Photo of a gecko, which has a unique ability to scamper across shear surfaces and vertical walls.

The gecko can scamper across sheer surfaces, even vertical walls.
Credit and Larger Version

October 16, 2008

Materials scientist Ali Dhinojwala came to the U.S. nearly two decades ago to earn a Ph.D., building upon a chemical engineering education in India and leaving behind his own factory and business.

"I grew up in a business family so it was an obvious career choice," he said. "I quickly realized the factory was missing a research component so I came to the United States to acquire that knowledge because graduate training was not as developed in India at that time." And while he still visits his family, as far as his career is concerned, he's never looked back.

In 2002, Dhinojwala first learned about the special toe structure of the gecko lizard when he attended a conference. Now, Dhinojwala and his colleagues are making breakthroughs in the growing field of gecko-inspired engineering.

By the early part of this decade, scientists were already trying to develop a synthetic adhesive inspired by the gecko's foot, and with good reason. Unlike glue and other sticky adhesives, gecko adhesion leaves no residue behind, doesn't degrade over time, and in an odd twist, a gecko's feet are self cleaning (more about that later).

The gecko's ability to adhere to vertical surfaces--even walk upside down on ceilings---is due to the special hierarchical structure of its toes. The toes are covered with microscopic hairs called setae that further split into hundreds of smaller structures called spatulae, each only millionths of a meter across. With its specialized feet, a gecko's traction is so strong, it can hold more than 100 times its weight.

"There is no glue involved," Dhinojwala said. Instead, the traction results from a physical property known as the van der Waals forces, a transient attraction that can occur from atom to atom at the scale of molecules.

When a gecko places its foot on the wall and curls its toes, the tiny spatulae get so close to the nooks and crannies on the wall's surface that their atoms interact with the atoms of the wall, bringing the van der Waals forces into play. To tighten or loosen its grip, the gecko curls and uncurls its toes, repeating the process more than 15 times per second.

A highly magnified photo of the gecko foot structure shown at the 2002 conference reminded Dhinojwala of a photo he'd seen of some carbon nanotube structures that a friend grew in his lab. When Dhinojwala compared the two pictures in his mind, he realized nanotubes might be an ideal material to mimic the footpad of a gymnastically gifted gecko.

Dhinojwala and his team at the University of Akron went to work developing columns of nanotubes that were rooted in flexible polymer pieces. The researchers grew the nanotubes on a glass-like silicon base and then transferred them to a plastic-like polymer to provide the flexibility inherent in a natural gecko foot's soft cushions. The polymer is tacky, so when it dries, it holds the silicon base that holds the nanotubes.

Dhinojwala and his team used the technique to develop an adhesive tape that sticks four times better than a gecko's foot and they are continuing to refine the technology to optimize adhesive strength.

For example, while solid columns or an extended "carpet" of nanotubes yield weaker tapes, the researchers demonstrated that the arrangement of individual nanotubes in distinct columns achieves greatest strength, with "checkerboard" patches proving particularly effective. Such patches can be peeled and used repeatedly without weakening.

The researchers, supported by a grant from the Polymers program of the NSF Division of Materials Research, announced their latest findings in the June 26, 2007, Proceedings of the National Academy of Sciences.

Although the technology is still in its infancy, Dhinojwala sees a number of applications. Current household tapes offer good adhesive properties but their stickiness eventually wears off and the tape comes off. A synthetic gecko tape would provide a permanent attachment. In the military, Dhinojwala sees an obvious place for the technology on the feet of robots that must negotiate rough surfaces or obstacles like walls. Industrial applications could include the field of microelectronics where components on computer boards require soldering to stay together. With synthetic gecko tape, components could be stuck together without heat, which saves energy, and cheaper and lighter plastic materials could replace the metal.

Another paper, currently under review, describes a recently developed synthetic tape with self-cleaning properties.

"Once a gecko walks in dirt or dust, it only takes two or three steps for it to regain 50 percent of its sticking ability," Dhinojwala said. "The adhesive materials available today all lose their tackiness once dirt or dust coats the surface. We're trying to understand this characteristic better so we can implement it into the synthetic material."

-- Diane Banegas, National Science Foundation dbanegas@nsf.gov

This Behind the Scenes article was provided to LiveScience in partnership with the National Science Foundation.

Investigators
Ali Dhinojwala

Related Institutions/Organizations
University of Akron

Locations
Ohio

Related Programs
Polymers

Related Awards
#0512156 Role of Structure and Dynamics of Molecules at the Interface in Controlling Friction, Adhesion and Adhesion Hysteresis

Total Grants
$400,000

Related Websites
LiveScience.com: Behind the Scenes: How to Make Adhesive as Good as a Gecko: /news/longurl.cfm?id=141
Resume: Professor Ali Dhinojwala: http://www2.uakron.edu/cpspe/dhinojwala/
NSF Press Release: Carbon Nanotubes Made to Stick Like a Gecko's Foot: http://www.nsf.gov/news/news_summ.jsp?cntn_id=104355&org=NSF

A close-up image of a gecko's foot.
A close-up image of a gecko's foot.
Credit and Larger Version

Photo of magnified gecko foot pads and carbon nanotube analogs developed in Dhinojwala's laboratory.
Carbon nanotube analog of gecko setae developed in Ali Dhinojwala's laboratory.
Credit and Larger Version

A high-magnification scanning electron microscope image of gecko setae.
A high-magnification scanning electron microscope image of gecko setae.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page