text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Geosciences (GEO)
Atmospheric and Geospace Sciences (AGS)
design element
AGS Home
About AGS
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Environmental Compliance
See Additional AGS Resources
View AGS Staff
GEO Organizations
Atmospheric and Geospace Sciences (AGS)
Earth Sciences (EAR)
Ocean Sciences (OCE)
Polar Programs (PLR)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional AGS Resources
AGS Data Policy
Handbook for AGS Postdoctoral Research Fellows
Proposals for Cyberinfrastructure in AGS
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Discovery
Electronics Breakthrough Could Revolutionize Memory Chips

Rice University graduate student Jun Yao's research with silicon-oxide circuits could be a game-changer in nanoelectronics

Photo of Jun Yao, a graduate student at Rice University.

Jun Yao, a graduate student at Rice University.
Credit and Larger Version

October 8, 2010

Tenacity, audacity, intuition, patience, a lot of talent and a little luck are healthy qualities for a young scientist. Jun Yao has them all.

The fifth-year graduate student at Rice University believed so strongly in his discovery two years ago that he went to the mat for it.

What Yao found could be a game-changer in the budding field of nanoelectronics. While working on a project to create memory devices based on graphite, he discovered that he could form nanocrystalline pathways in silicon oxide, an insulator that was underlying the graphite, simply by applying voltage. Smaller pulses of about 8 and 3.5 volts would repeatedly break and reconnect the pathway. Better yet, the technique became the basis for a two-terminal resistive memory bit about 5 nanometers (billionths of a meter) wide.

The breakthrough brings high-capacity, 3-D memory chips a step closer to reality; Rice's commercial partners are already working on prototypes that they expect will compete well with the technologies striving for dominance in next-generation computer memory.

Yao's revelation caused a splash in the press when his National Science Foundation (NSF)-supported paper, co-authored with fellow graduate student, Zhengzong Sun, and three Rice professors, was published in Nano Letters. That same day, the story appeared on page 1 of the New York Times.

It was the payoff for two years spent struggling to explain to a host of skeptics, including his lab partners, that the silicon oxide itself was all one needed to build next-generation computer memory.

"I don't remember how this idea came to me. Maybe it was just a random thought," said Yao, 29, who earned a bachelor's degree in electrical engineering and a master's in computational physics from Fudan University in his native China. He was helping with a graphitic memory project in the Rice lab of chemist James Tour when Yao decided to remove the graphite as a control experiment--and the circuit still worked.

"I was pretty surprised, yet excited. I did the experiment in the evening, got the result and sent an e-mail to Dr. Tour. I marked it 'Important! Hey, you need to look at this!' The next day, the prolonged debates over the mechanism between me and the graphitic guys began," he added.

Yao spent months testing his idea, combining silicon oxide with every material he could find. They all worked, he said, because the silicon oxide was carrying the load. One of his co-advisers, Rice professor and condensed matter physicist Douglas Natelson, pointed out researchers had been seeing similar effects in silicon oxide since the 1960s, but none had the resources to understand the mechanism.

What Yao finally found was that a strong pulse through a layer of silicon oxide sandwiched between semiconducting silicon would strip off oxygen atoms, creating the nanoscale bit between the terminals that subsequent pulses could switch on and off.

"I made all kinds of switching devices out of nanotubes, amorphous carbon, semiconducting titanium nitride, metal nanoparticles, and I presented this data to the graphitic memory people. But I didn't realize things that are clear to me aren't necessarily equally clear to other people," Yao said. "It’s a hard sell. Even Dr. Tour was 50-50, but he didn't make an arbitrary judgment and was willing to let the story develop."

While academic rivals prepared an influential paper on graphitic memory that was published in Nature Materials in late 2008, Yao worked to make his case, finally bringing enough evidence to win over Tour and his other co-adviser, Lin Zhong, a Rice professor of electrical and computer engineering. (Natelson said he was convinced from the start.)

"I've learned that the most convincing way to tell people something is not to hold your fist to fight; it's to smile and tell people, with patience, 'OK, this is what I did. What do you think?'" Yao said. "This process gave me a lot more than the science itself. It gave me a sense of how to sell my ideas in a friendly way."

Yao came to Tour's attention when the newly arrived student knocked on the Rice chemist's door. Tour thought it odd that a physics student would seek a job in his lab--but went with it, eventually.

"I came across Dr. Tour's website and thought they were doing some really interesting things," said Yao, who struggled to find a research home upon arriving at Rice (and eventually found three).

"He didn't have a position available, but I found out where and when his meetings were held and showed up every week." Tour finally noticed the quiet student sitting in the corner and hooked him up with a research scientist.

"He just kind of nudged his way in. It was hard to tell him no," Tour said.

Even before the new revelation, Yao had raised his profile at Rice, a nano research powerhouse celebrating the 25th anniversary of the Nobel Prize-winning discovery of the buckyball with a conference and gala from October 10-13, 2010.

Last December, Yao and a research partner surreptitiously grew "nano-owls," forests of carbon nanotubes shaped into the Rice University logo. He painstakingly drew the owl into an electron-beam controller by tracing the logo with a mouse.

Now, Yao hopes to one-up his latest paper by finding a way to visualize the workings of his silicon oxide memory. "This project is not yet done," he said. "I hope I can provide more details about how it works."

-- Mike Williams, Rice University Public Affairs, Rice University Public Affairs, mikewilliams@rice.edu

This Behind the Scenes article was provided to LiveScience in partnership with the National Science Foundation.

Investigators
Jun Yao
Douglas Natelson
Zhengzong Sun
James Tour
Lin Zhong

Related Institutions/Organizations
William Marsh Rice University

Locations
Texas

Related Programs
Condensed Matter Physics
Computer Systems Research
Nanoscale Science and Engineering
Solid State and Materials Chemistry
Major Research Instrumentation Program
Electronics, Photonics, and Magnetic Devices
Macromolecular, Supramolecular and Nanochemistry

Related Awards
#0720825 CSR---EHS: Coordinated Energy Optimization of Mobile Embedded Systems with User Information
#1040478 MRI: Development of an Opto-electronic Characterization Instrument
#0901348 Exploring charge transfer at organic device interfaces
#0855607 Noise and High Frequency Properties of Single-Molecule Transistors
#0601303 Organic Semiconductor Devices: Contacts, Transport and the Nanoscale Limit
#0403457 NER: Atomic-Scale Magnetoresistive Sensors and Nanoscience Education
#0347253 CAREER: Conduction at the Molecular Scale and Nanoscience Education
#1007483 Synthesis, Fluorescence Imaging and Tracking of Inherently Fluorescent Single-Molecule Nanocars
#0708765 NIRT: Synthesis, Actuation and Control of Single-Molecule Nanocars

Related Websites
LiveScience.com: Behind the Scenes: Electronics Breakthrough Could Revolutionize Memory Chips: http://www.livescience.com/technology/nanoelectronics-memory-chips-101001.html
Nano Letters, August 31, 2010: http://pubs.acs.org/doi/abs/10.1021/nl102255r
Silicon oxide circuits break barrier, Rice University Press Release: http://www.media.rice.edu/media/NewsBot.asp?MODE=VIEW&ID=14702&SnID=2029887014
Tiny owls take flight, Rice University Press Release: http://www.media.rice.edu/media/NewsBot.asp?MODE=VIEW&ID=13498

Photo of microscopic NanoOwls created from carbon nanotubes.
Jun Yao traced the Rice logo--by hand--to create microscopic NanoOwls from carbon nanotubes.
Credit and Larger Version

A detail from one of Jun Yao's NanoOwls.
A detail from one of Jun Yao's NanoOwls.
Credit and Larger Version

Image of a 1k silicon oxide memory chip created using Rice technology.
A 1k silicon oxide memory chip created using Rice technology.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page