text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
Chemistry (CHE)
design element
CHE Home
About CHE
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Highlights
Presentations
Newsletters, Dear Colleague Letters, and Workshop Reports
See Additional CHE Resources
View CHE Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional CHE Resources
Image Credits
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Discovery
Mummified Trees Could Take Climate Scientists Back to the Future

Newly discovered ancient, mummified trees may reveal clues about future ecosystem responses to climate change

Photo of Quttinirpaaq National Park, which is dominated by glaciers and tundra vegetation.

The landscape of Quttinirpaaq National Park is dominated by glaciers and tundra vegetation.
Credit and Larger Version

March 16, 2011

When in Quttinirpaaq National Park in the Canadian Arctic, Ohio State University Earth scientist Joel Barker initially spotted some pieces of dead trees scattered on the barren ground near a glacier. Immediately, he knew he had found something akin to a looking glass peering into the Arctic's ecological past.

The Hazen Plateau on Ellesmere Island, a polar desert where winter temperatures can currently dip down to 50 below zero, is currently too cold and dry to support forests; the only living trees that now dot the park's desolate landscape are dwarf willows. Therefore, the pieces of wood must have come from trees that lived millions of years ago, when the Arctic was still warm enough to support forests.

The trees probably died in a landslide, as indicated by deposits still present on surrounding material. The killing landslide toppled and engulfed the trees quickly enough to seal them from oxygen and to prevent water from circulating through. The result: The remaining pieces of dead trees are now in a perfectly preserved mummified state, with much of their organic material still intact. (By contrast, if the trees had been petrified, much of their organic material would have been slowly replaced by minerals and eventually turned to stone.)

In fact, the organic material in the dead trees is so well preserved that the wood can still burn, and even the most delicate tree structures, such as leaves, are present. "The dead trees look just like the dried-out dead wood lying outside now," said Barker.

The summer following his discovery, Barker returned with colleagues, supported by an EAGER (EArly-concept Grants for Exploratory Research) grant from the National Science Foundation (NSF). Barker and Ohio State colleagues Yo Chin and David Elliot explored and collected samples from the source of the scattered tree pieces--a deposit about 100 feet (30 meters) wide by 30 feet (10 meters) high.

Analyses of the organic material can reveal much about the source trees and about the ecological conditions that existed when they lived. For example, because pollen that disappeared about 12 million years ago are absent from the wood, Barker believes that the trees are probably at most 12 million years old. And because ocean cores that contain land-derived sediment indicate that forests disappeared from the Arctic about 2 million years ago, Barker believes that the wood is probably at least about that old.

Other evidence indicates to Barker that his wood samples came from trees that were once part of an ecologically stressed ecosystem. For example, the tree pieces have narrow growth rings, indicating that, when alive, the trees lacked sufficient nutrients for growth.

In addition, Barker said that only five different species of trees were represented in the ancient wood he collected. Such relatively low species diversity is typical of stressed ecosystems. That is because as an ecosystem becomes more stressed and less habitable, fewer species can survive in it. "Probably living at the most northern extent of its range, this forest was probably living at the edge, just hanging on, just barely staying alive," said Barker.

"The most stressed ecosystems are vulnerable to even small changes in climate," said Barker. "So studies of the sensitivity of stressed ecosystems to past cooling might improve our understanding of the sensitivity of ecosystems to stresses created by ongoing climate change." Such studies may, for example, help reveal the speed at which ecosystems will respond to current and future temperature changes.

Barker said that the mummified trees from Quttinirpaaq National Park--which he found through a tip from a park ranger--may be more useful for climate change studies than any other mummified forests found in the Arctic so far. Why? Because all other mummified forests that have, so far, been found in the Canadian Arctic lived further south than the Quttinirpaaq trees. And a mummified forest that was found in Greenland--the only mummified forest found north of the Quttinirpaaq forest--had more species diversity than the Quttinirpaaq trees.

Therefore, these other mummified forests were probably not as stressed and were probably not as vulnerable to climate change as were the Quttinirpaaq trees. However, additional mummified forests will probably be exposed by retreating glaciers as climate change continues.

In the meantime, Barker will continue to analyze his mummified samples. He plans to extract individual components from pieces of mummified tree trunks to identify environmental conditions that the trees experienced on an annual basis throughout their lives. In addition, he plans to compare specific tree components, such as leaf cuticles, from mummified material with the same components from contemporary trees of the same species. Differences between the mummified and contemporary components of the same tree species may provide clues about the evolution of those species.

But with such experiments, Barker will only be literally scratching the surface of his mummified samples. He hopes to soon return to their site of origin to dig deeper to find their source forest, where trees may be standing upright in a so-called "growth position."

-- Lily Whiteman, National Science Foundation, lwhitema@nsf.gov

This Behind the Scenes article was provided to LiveScience in partnership with the National Science Foundation.

Investigators
Joel Barker
Yu-Ping Chin
David Elliot

Related Institutions/Organizations
Ohio State University

Locations
Ohio
Canada

Related Programs
Arctic Natural Sciences

Related Awards
#1026177 EAGER: Characterization of Potentially Jurassic-Age Mummified Organic Material, Ellesmere Island, Canada.

Total Grants
$105,208

Related Websites
LiveScience.com: Behind the Scenes: Mummified Trees Take Climate Scientists Back to the Future: http://www.livescience.com/13186-mummified-trees-climate-bts-110311.html
The Role of Ancient Organic Matter in Contemporary Ecosystem Processes: /news/longurl.cfm?id=221

Photo of mummified leaves found in the sediment at the mummified forest deposit.
Researchers have found mummified leaves in the sediment at the mummified forest deposit.
Credit and Larger Version

Photo of very narrow growth rings indicating growth in a very harsh environment.
The mummified trees have very narrow growth rings indicating growth in a very harsh environment.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page