text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Biological Sciences (BIO)
Biological Infrastructure (DBI)
design element
DBI Home
About DBI
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Examples of Broader Impacts
Supplements & Other Opportunities
See Additional DBI Resources
View DBI Staff
BIO Organizations
Biological Infrastructure (DBI)
Environmental Biology (DEB)
Emerging Frontiers (EF)
Integrative Organismal Systems (IOS)
Molecular and Cellular Biosciences (MCB)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional DBI Resources
BIO Reports
BIO Dear Colleague Letters
Merit Review
Merit Review Broader Impacts Criterion: Representative Activities
Image Credits
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Discovery
Researchers Consider Ancestry of Recent Fossil Finds

Thought experiment stresses consequences of placing newly discovered fossils on human family tree

Images of the top and front of hominin skulls.

Anthropologists analyze early human ancestor classification problems.
Credit and Larger Version

March 16, 2011

Someday a future intelligent organism could sweep away a million years of dust and find the bones of a Homo sapien and wonder what he was.

Further research would show Homo sapiens walked upright, lived in communities and buried their dead. But this future intelligent organism might be faced with an old puzzle--determining where Homo sapiens came from.

"If their cognitive world induced them to ask the same sort of questions, the problems we pointed up would still be there," said Bernard Wood, professor of human origins and of human evolutionary anatomy at George Washington University in Washington, D.C.

Wood was speaking of a recent paper published in the journal Nature in which he and physical anthropologist Terry Harrison of New York University argued it's not so easy to determine whether relatively new fossil finds are early members of the human evolutionary family or prehistoric apes.

Wood and Harrison write, "All the organisms alive today are the terminal twigs of the crown of the tree of life." Though not mentioning it directly, they hint that one day even Homo sapiens--anatomically modern humans--might disappear, thus leaving some future intelligent organism to determine Homo sapiens place in the tree of life. But not only that, such a disappearance might leave these future organisms with the same species classification problems that exist today.

The paper, "The Evolutionary Context of the First Hominins," is a thought experiment. Its authors think through the various consequences of placing recently discovered fossils Orrorin tugenensis, Sahelanthropus tchadensis and Ardipithecus ramidus so firmly on the human branch of the evolutionary tree.

The fossils may not be related to Homo sapiens at all, despite their discoverers' claims. Instead, they may be extinct, distant cousins, with a relationship to modern humans much like that of living chimpanzees, gorillas or orangutans, say Wood and Harrison.

"Our null hypothesis is that the more morphology that is shared, the closer the relationship between the organisms," said Wood, explaining the default position generally accepted by scientists when classifying species.

Evolutionary biologists and physical anthropologists traditionally use a species' physical characteristics--or morphology--to determine which groups of organisms are most closely related to one another. But, in some cases, common physical traits may not indicate a common evolutionary history.

The central theme here is something called homoplasy, a character shared by a set of species but not present in a common ancestor. A good example is the evolution of the eye, which originated independently in many different species.

Sometimes these homoplasies and/or common morphologies may mean common ancestry and sometimes they may not.

Wood cautions that if morphology or homoplasy can be shared for reasons other than a recent common ancestor, such as common environmental pressures, then anthropologists are stumped.

"Supposing two distantly related, fruit-eating apes were living at the same time and facing the consequences of the same climate change," Wood explained. "Then suppose this climate change resulted in the forest's fruiting trees being replaced by open woodland and increased grassland, forcing the distantly related apes to adapt to eating tough tubers instead of soft fruit.

"They both would undergo an increase in the size of their chewing teeth and an increase in the size of their mandibles, but they would not have inherited this morphology from a shared recent ancestor."

Instead they would have gotten it from a common environmental event and convergent evolution, developing the same or similar biological traits in unrelated or distantly related lineages.

In the case of Ardipithecus and other recently discovered fossils, traits shared in common with Homo sapiens such as bipedal locomotion or small canine teeth may indicate a close relationship with anatomically modern humans or, as Wood and Harrison suggest, may be the result of convergent evolution.

"Homoplasy makes it unwise to rely on just a few morphological similarities to declare fossils are early hominins," Wood contends.

Wood and Harrison underscore their concern with two cautionary tales of errant early human ancestor classification.

In an example from more than 30 years ago, scientists classified a 12 million-year-old Asian fossil named Ramapithecus punjabicus as a likely human ancestor. Now, after further research, Ramapithecus is thought to belong to one or more species of extinct primates, and perhaps most accurately regarded as a distant cousin of modern orangutans.

In another example, a species called Oreopithecus bambolii, represented by a cache of 7 to 8 million-year-old fossils found at sites in Tuscany and Sardinia, Italy, and first described nearly 140 years ago, was thought to be a potential early human ancestor because of skeletal similarities with modern humans. Research suggested Oreopithecus had many anatomical similarities with the group of organisms that includes great apes and modern humans. It also had characteristics generally considered to be uniquely associated with bipedal behavior.

But only after additional discoveries by a Swiss paleontologist in the late 1950s, researchers began to rethink Oreopithecus' initial classification. Scientists still debate its precise position on the evolutionary tree and whether it is more accurately regarded as a descendant of a European ape or as an African anthropoid.

"We emphasize that we are not claiming that the presence of homoplasy in and around the hominin clad doom(s) all efforts to recover evolutionary relationships to failure," the researchers write. They take the same stance regarding other methodological and analytical limitations that arise when investigating evolutionary relatedness.

They stress that their paper doesn't claim Orrorin, Sahelanthropus and Ardipithecus are not early human ancestors. But they encourage paleoanthropologists to acknowledge the potential shortcomings of their data when it comes to generating hypotheses about relationships.

"We urge researchers, teachers and students to consider the published phylogenetic interpretations of these taxa as among a number of possible interpretations of the evidence," write Wood and Harrison.

For now, they hope paleoanthropologists will heed the warning and leave an accurate record that perhaps some future intelligent organism will be able to decipher.

The National Science Foundation funds Wood's and Harrison's research through its Division of Behavioral and Cognitive Sciences.

-- Bobbie Mixon, (703) 292-8070, bmixon@nsf.gov

Investigators
Bernard Wood
Terry Harrison

Related Institutions/Organizations
George Washington University
New York University

Locations
District Of Columbia
New York

Related Programs
Physical Anthropology
Integrative Graduate Education and Research Traineeship Program

Related Awards
#0801634 IGERT: Dynamics of behavioral shifts in human evolution: brains, bodies and ecology
#0849204 Doctoral Dissertation Improvement Grant: Locomotor Function and Phylogeny: Implications for Interpreting Extinct Hominoid Morphology

Total Grants
$1,913,750

Related Websites
Nature - The Evolutionary Context of the First Hominins: http://www.nature.com/nature/journal/v470/n7334/full/nature09709.html

border=0/


Email this pagePrint this page
Back to Top of page