text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
Astronomical Sciences (AST)
design element
AST Home
About AST
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
AST Presentations
Astronomy & Astrophysics Advisory Committee (AAAC)
AST Portfolio Review
View AST Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Discovery
Archaeology of the Stars

Michigan State researcher Timothy Beers studies the formation and evolution of stars born many billions of years before the Sun

Photo of Timothy Beers, professor of astronomy and physics at Michigan State University.

Timothy Beers, professor of astronomy and physics at Michigan State University.
Credit and Larger Version

September 17, 2008

In the shadow of the Andes Mountains, near Chile's northern tip, archaeologists scour the Atacama Desert for traces of the mysterious culture that flourished there thousands of years ago. The Chinchorro people left no written record, but they did leave hundreds of meticulously preserved mummies. From carbon-14 analysis, scientists have dated the earliest to 5050 B.C., two millennia before Egyptians began mummifying their dead.

Meanwhile, on a cloudless mountaintop near the southern reaches of the Atacama, other researchers train their eyes toward the sky. The astronomers at the European Very Large Telescope (VLT), a system of four 8-meter telescopes on Chile's Cerro Paranal, seek their own ancient relics: stars born many billions of years before our sun. Using another atomic clock, this one based on uranium-238, scientists have now made precise calculations of a few such stars' ages. Astronomers know these stars began burning when the universe was young, making their ages a lower bound for the age of the universe itself.

Timothy Beers, university distinguished professor of astronomy and physics at Michigan State University, is one leader in this celestial hunt. In 2001, he co-authored a Nature paper describing a new method for gauging stellar age: measuring the amount of radioactive uranium-238 currently inside a star and comparing that to the amount it contained at birth. Previous methods tracked thorium-232 decay, which delivers less precise estimates. Using their novel technique, Beers and his colleagues age-dated a star they observed with the VLT. They clocked that star's age at 12.5 billion years, supporting models that put the universe's age between 13 and 14 billion years. 

Uranium dating exploits the same principle as carbon dating, used since the 1950s to investigate mummies, fossils and other objects found on earth. As with most elements, carbon and uranium nuclei can contain varied numbers of neutrons, along with their fixed number of protons. Some forms, or isotopes, are stable, while others decay to more favorable configurations. Carbon-14 undergoes beta decay, expelling an electron and transforming a neutron to a proton to form nitrogen-14. Uranium-238 decays by alpha emission, losing two neutrons and two protons to become thorium-234, which in turn decays to more stable products, such as lead and bismuth.

Each process unfolds at a characteristic rate, measured in half-lives. The half-life of carbon-14--the amount of time it takes half of a given sample to decay to nitrogen-14--is 5,730 years. The half-life of uranium-238 is 4.46 billion years. To scientists, both decay processes are like cosmic hourglasses, with carbon turning over relatively quickly and uranium trickling away much more slowly. That makes carbon a good timekeeper for terrestrial matter and uranium ideal for stars.

The carbon clock offers another plus for archaeologists: it comes imbedded in all the wood, fibers and bones the researchers study. By taking a tiny sample to the lab, they can read the age directly off an artifact.

Astronomers have a tougher task. When the subject is stars, it is impossible to pinch off a piece to take home--CS 31082-001, the star of Beers' 2001 paper, twinkles near the outer edge of the galaxy, 13,000 light years from here. So Beers and his colleagues examine the electromagnetic signals stars naturally radiate. By observing the wavelengths that reach the earth, the researchers can determine which wavelengths are absorbed by a star's cooler, outer layers. That tells them the identity and relative amount of each element and, in some cases, each isotope, that composes it.

But ancient stars are almost exclusively hydrogen and helium-light, stable elements with no decay signatures. (Most of the heavier elements found in newer stars, and in planets and your own body, were forged through many generations of stellar evolution.) The trick is finding stars like CS 31082-001, which contain traces of heavy elements produced in early supernovae. By analyzing their absorption spectra, astronomers can read the uranium clock.

Still, knowing the age of an object, whether a mummy or a star, is only the beginning of knowing its story. Scientists want to know why and how that object came about, not just when. And old stars offer some of the best clues to the composition and evolution of the early universe.

That's why Beers and his colleagues continue to search the skies over Cerro Paranal and over other observatories throughout the world. More old stars may mean more new answers.

-- Rachel Carr, National Superconducting Cyclotron Laboratory carr@nscl.msu.edu

This Behind the Scenes article was provided to LiveScience in partnership with the National Science Foundation.

Investigators
Timothy Beers

Related Institutions/Organizations
Michigan State University

Locations
Michigan

Related Awards
#0406784 An Intensive Search for r-process-Enhanced Stars, and Abundance Patterns in the Early Galaxy

Total Grants
$313,961

Related Websites
LiveScience.com: Behind the Scenes: Archeology of the Stars: /news/longurl.cfm?id=131
Star field around CS 31082-001, described in Beers' 2001 paper: /news/longurl.cfm?id=132
Very Large Telescope (VLT) on the Paranal Summit: http://www.eso.org/gallery/v/ESOPIA/Paranal/phot-43a-99.jpg
Timothy Beers' Vitae: http://www.pa.msu.edu/~beers/

Timothy Beers discusses his research on the formation of the earliest stars in the universe.
View Video
Timothy Beers discusses his research on the formation of the earliest stars in the universe.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page