text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
Physics (PHY)
design element
PHY Home
About PHY
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Facilities and Centers
PHY Program Director Jobs
See Additional PHY Resources
View PHY Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional PHY Resources
PHY: Investigator-Initiated Research Projects
Physics in the Mathematical and Physical Sciences
Nuclear Science Advisory Committee (NSAC)
High Energy Physics Advisory Panel (HEPAP)
DCL: Announcement of Intent to use an Asynchronous Review Mechanism for Proposals
DCL: Announcement of Instrumentation Fund to Provide Mid-Scale Instrumentation for FY2014 Awards in
PHY COV Report 2012
Response to the PHY COV Report
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Discovery
How to Teleport Quantum Information from One Atom to Another

Researchers have shown for the first time how to use a process called teleportation to transfer a quantum state over a significant distance from one atom to another

Illustration showing information from left atom teleported to right atom three feet away.

Teleportation carries information between entangled atoms.
Credit and Larger Version

February 25, 2009

Although their achievements haven't yet risen to the sophistication of the Starship Enterprise's transporter room, physicists in recent years have learned how to fully transfer the identity of one particle onto another particle at a separate location--a form of teleportation made possible by the strange rules of quantum mechanics.

Now, researchers have for the first time succeeded in teleporting the state of an atom across a significant distance to another atom. That's important because atoms can be trapped and held in the same quantum state for considerable periods of time, so can serve as memory units for quantum information. Teleportation between atoms could therefore be an important ingredient in quantum computers or quantum communication systems.

What's transported by quantum teleportation is not an actual particle but information about the quantum state of that particle--in essence, a full specification of the particle's energy and motion, as well as intrinsic properties such as its charge and spin. The first demonstrations of teleportation transferred a quantum state from one photon to another. But because photons, the quantum units of light, are flighty creatures, impossible to pin down in one place, they are not convenient for applications such as quantum computing, where the goal is to create and control quantum states so that their interactions perform a desired calculation.

Far more useful in that regard would be the quantum state of an atom--the energy and spin of a particular electron, for example--since atoms can be held and maintained in a certain state for periods of a second or more. Some recent experiments have demonstrated teleportation between photons and atoms, or between atoms at very close range, but Chris Monroe of the University of Maryland and his colleagues have now teleported atomic states over a distance of one meter.

To see how this example of teleportation works, it's easiest to go through the experimental procedure step by step. The team begins with two ionized atoms of the element ytterbium, each one trapped at an ultralow temperature in separate devices one meter apart. By shining a sequence of brief laser pulses at the ions, the physicists can put them in what are called superposed states, in which each ion in effect exists in two distinct states of ionization at once. A small energy difference separates these two states.

This mixed state is a "qubit," the basic element of quantum computing. In standard binary computing, a bit must be either 0 or 1, but a qubit can represent both possibilities at once. Logical operations on qubits can then perform more than one calculation at the same time.

The goal of teleportation is to transfer the state of one of the ions, call it A, onto the other, called B. This can't be done by making a direct measurement on A, because that would force it out of its superposed state into one or other of the two component states--meaning that the measurement would have destroyed any chance of knowing what superposition it was originally in. So a more subtle operation is called for.

The researchers flash very brief laser pulses at the ions, jolting them momentarily into higher energy states. Almost immediately they fall back again, each emitting a photon. These photons are also in superposed states; they're a mix of two different photons, corresponding to the mixed state of the ion they came from.

The two photons then travel from different directions into a beam splitter, a device, like a half-silvered mirror, that reflects or transmits light with equal probability. Occasionally, two photons will emerge in different directions from the beam splitter.

But does that mean that both photons went straight through, or that both were reflected? It's impossible to know, and the inability to tell which photon went which way constitutes an "entanglement" of their states. Because the photons themselves are in states that reflect the states of the ions they came from, the superposed states of the ions must also be entangled.

The last step to achieve teleportation is for the researchers to conduct an operation on ion A, using microwaves, that reveals partial information about its superposed state. That information is enough, however, that it can be used to determine a microwave operation on ion B that will put it in A's original state. Because this information must travel in some conventional way, teleportation does not break any rules about the impossibility of faster-than-light communication. For teleportation to work, however, it's also essential that the two ions are entangled in a strange quantum way in which actions on one can seem to have an instant effect on the other.

In their experiments, Monroe and his colleagues attempt to teleport states tens of thousands of times per second. But only about 5 times in every billion attempts do they get the simultaneous signal at the beam splitter telling them they can proceed to the final step. As a result, they achieve teleportation only about once every 12 minutes.

This low rate, says Monroe, is mostly because of the difficulty of catching the photons from the ions and sending them to the beam splitter, and because the detectors do not trigger on every photon that comes their way. If they could increase the hit rate even to once in ten thousand attempts, the technique would be potentially useful, Monroe adds. That's because the teleportation time would then be shorter than the demonstrated qubit lifetime of two seconds or more for the trapped ions, allowing quantum links to be formed over much wider networks containing many more qubits.

--  David Lindley, National Science Foundation

Investigators
Christopher Monroe

Related Institutions/Organizations
University of Maryland College Park

Locations
Maryland

Related Awards
#0829424 Collaborative: Photonic Quantum Networking of Trapped Ion Qubits

Total Grants
$386,826

Related Websites
Joint Quantum Institute: http://jqi.umd.edu/

border=0/


Email this pagePrint this page
Back to Top of page