text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Computer & Information Science & Engineering (CISE)
Computing and Communication Foundations (CCF)
design element
CCF Home
About CCF
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
View CCF Staff
CISE Organizations
Advanced Cyberinfrastructure (ACI)
Computing and Communication Foundations (CCF)
Computer and Network Systems (CNS)
Information & Intelligent Systems (IIS)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Nanotechnology Undergraduate Education (NUE) in Engineering

CONTACTS

Name Email Phone Room
Mary  Poats mpoats@nsf.gov (703) 292-5357  585 N  
Frederick  M. Kronz fkronz@nsf.gov (703) 292-7283  995 N  
Yvette  Weatherton yweather@nsf.gov (703) 292-5323  835S  

PROGRAM GUIDELINES

Solicitation  14-541

Important Information for Proposers

A revised version of the NSF Proposal & Award Policies & Procedures Guide (PAPPG) (NSF 15-1), is effective for proposals submitted, or due, on or after December 26, 2014. The PAPPG is consistent with, and, implements the new Uniform Administrative Requirements, Cost Principles, and Audit Requirements for Federal Awards (Uniform Guidance) (2 CFR 200). NSF anticipates release of the PAPPG in the Fall of 2014. Please be advised that, depending on the specified due date, the guidelines contained in NSF 15-1 may apply to proposals submitted in response to this funding opportunity.

SYNOPSIS

This solicitation aims at introducing nanoscale science, engineering, and technology through a variety of interdisciplinary approaches into undergraduate engineering education. The focus of the FY 2014 competition is on nanoscale engineering education with relevance to devices and systems and/or on the societal, ethical, economic and/or environmental issues relevant to nanotechnology.

A well-prepared, innovative science, technology, engineering and mathematics (STEM) workforce is crucial to the Nation's health and economy. Indeed, recent policy actions and reports have drawn attention to the opportunities and challenges inherent in increasing the number of highly qualified STEM graduates, including STEM teachers. Priorities include educating students to be leaders and innovators in emerging and rapidly changing STEM fields as well as educating a scientifically literate populace; both of these priorities depend on the nature and quality of the undergraduate education experience. In addressing these STEM challenges and priorities, the National Science Foundation invests in research-based and research-generating approaches to understanding STEM learning; to designing, testing, and studying curricular change; to wide dissemination and implementation of best practices; and to broadening participation of individuals and institutions in STEM fields. The goals of these investments include: increasing student retention in STEM, to prepare students well to participate in science for tomorrow, and to improve students' STEM learning outcomes.

Recognizing disciplinary differences and priorities, NSF's investment in research and development in undergraduate STEM education encompasses a range of approaches. These approaches include: experiential learning, assessment/metrics of learning and practice, scholarships, foundational education research, professional development/institutional change, formal and informal learning environments, and undergraduate disciplinary research. Both individually and integrated in a range of combinations, these approaches can lead to outcomes including: developing the STEM and STEM-related workforce, advancing science, broadening participation in STEM, educating a STEM-literate populace, improving K-12 STEM education, encouraging life-long learning, and building capacity in higher education.

Related funding opportunities are posted on the web site for the National Nanotechnology Initiative, http://www.nsf.gov/nano In addition, research and education projects in nanoscale science and engineering will continue to be supported in the relevant NSF programs and divisions.

THIS PROGRAM IS PART OF

Engineering Education


What Has Been Funded (Recent Awards Made Through This Program, with Abstracts)

Map of Recent Awards Made Through This Program

News

Discoveries



Email this pagePrint this page
Back to Top of page