text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Engineering (ENG)
Industrial Innovation and Partnerships (IIP)
design element
IIP Home
About IIP
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
I/UCRC Program Homepage
SBIR Program Homepage
PFI Programs
See Additional IIP Resources
View IIP Staff
ENG Organizations
Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
Civil, Mechanical and Manufacturing Innovation (CMMI)
Electrical, Communications and Cyber Systems (ECCS)
Engineering Education and Centers (EEC)
Emerging Frontiers in Research and Innovation (EFRI)
Industrial Innovation and Partnerships (IIP)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional IIP Resources
SBIR.gov
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Partnerships for Innovation: Building Innovation Capacity  (PFI:BIC)

CONTACTS

Name Email Phone Room
Sara  B. Nerlove snerlove@nsf.gov (703) 292-7077   
Alexandra  Medina-Borja amedinab@nsf.gov (703) 292-7557   
Chris  Paredis cparedis@nsf.gov (703) 292-2241   
Leon  Esterowitz lesterow@nsf.gov (703) 292-7942   
Gurdip  Singh gsingh@nsf.gov (703) 292-8950   

PROGRAM GUIDELINES

Solicitation  14-610

DUE DATES

Letter of Intent Deadline Date:  December 3, 2014

Full Proposal Deadline Date:  January 28, 2015

SYNOPSIS

The Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) program supports academe-industry partnerships, which are led by an interdisciplinary academic research team with a least one industry partner to build technological, human, and service system innovation capacity. These partnerships focus on the integration of technologies into a specified human-centered smart service system with the potential to achieve transformational change in an existing service system or to spur an entirely new service system. These technologies have been inspired by existing breakthrough discoveries.

Service systems are socio-technical configurations of people, technologies, organizations, and information designed to deliver services that create and deliver value [1]. A "smart" service system is a system capable of learning, dynamic adaptation, and decision making based upon data received, transmitted, and/or processed to improve its response to a future situation. The system does so through self-detection, self-diagnosing, self-correcting, self-monitoring, self-organizing, self-replicating, or self-controlled functions. These capabilities are the result of the incorporation of technologies for sensing, actuation, coordination, communication, control, etc. The system may exhibit a sequence of features such as detection, classification, and localization that lead to an outcome occurring within a reasonable time.

PFI:BIC funds research partnerships working on projects that operate in the post-fundamental discovery space but precede being on a clear path to commercialization. These projects require additional effort to integrate the technology into a real service system with human factors considerations, which in turn might spawn additional discoveries inspired by this interaction of humans with the technology.  

Partnership activities that drive sustained innovation include the targeted allocation of resources such as capital, time, and facilities; and sharing of knowledge in a cross-organizational and interdisciplinary context. The project must involve research tasks that demonstrate a highly collaborative research plan with participation of the primary industrial partner with the academic researcher during the life of the award.

Cultivating smart service systems requires not only the participation of the scientific discipline or disciplines related to the technology, but also of a range of other disciplines needed to achieve successful integration into a smart service system. The resulting system requires an understanding of human interaction with technology and a human-centered design to assure the desirability and the effectiveness of the proposed service system. Thus, in addition to the discipline related to the technology, the disciplines to be included in this project are 1) systems engineering or engineering design, 2) computer science/information technology, and 3) human factors/behavioral science/cognitive engineering. Some teams not experienced with service engineering might benefit from consulting with an individual with expertise in service operations or service systems. NSF recognizes that the labels for the aforementioned disciplines may vary in different institutions and organizations, so what is important here is to demonstrate the equivalence of the representation of these disciplines. The proposer will be asked to show how the disciplines will be integrated in the context of the project as part of the research plan in the Project Description.

Examples [2] of technology applied to service systems include smart healthcare, smart cities, on-demand transportation, precision agriculture, smart infrastructure, and other technologies enabling self-service and customized service solutions.

WEBINARS: Webinars will be held to answer questions about the solicitation. Register on the PFI:BIC website where details will be posted (http://www.nsf.gov/eng/iip/pfi/bic.jsp). Potential proposers and their partners are encouraged to attend. Also, Vice Presidents for Research and academic personnel concerned with the review of their respective institution’s selection of candidates for submission, individuals from Sponsored Research Offices, and those focused on the identification and understanding of limited application submissions are encouraged to attend.


[1] Spohrer J., Maglio P. P., Bailey J., Gruhl D. (2007). Steps towards a science of service systems. Computer 40(1):71-77. doi:10.1109/MC.2007.33.

[2] Note that examples have been provided in this solicitation to offer a sense of the variety of possibilities across types of service systems and the forefront technologies that would allow them to achieve their apex of effectiveness and efficiency, but by no means are they intended to represent program emphases or priorities.

What Has Been Funded (Recent Awards Made Through This Program, with Abstracts)

Map of Recent Awards Made Through This Program



Email this pagePrint this page
Back to Top of page