text-only page produced automatically by LIFT Text
Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation HomeNational Science Foundation - Environmental Research and Education
Environmental Research and Education
design element
ERE Home
About ERE
Funding Opportunities
Advisory Committee
See Additional ERE Resources
View ERE Staff
Proposals and Awards
Proposal and Award Policies and Procedures Guide
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Merit Review
NSF Outreach
Policy Office
Additional ERE Resources
ERE Funding Opportunities

Microbial Biofilm Yields Community Genomes, Metabolic Clues
Research from Iron Mountain mine sheds light on acid drainage

NSF PR 04-011 - February 01, 2004

Media contact: Sean Kearns, NSF  (703) 292-7963 skearns@nsf.gov
Program contact: Matt Kane, NSF  (703) 292-7186 mkane@nsf.gov

  acidic drainage
Acidic drainage from a mine flows on the surface after passing through the underground study site at Iron Mountain, near Redding, Calif.
Credit: Gene Tyson, UC Berkeley
Select image for larger version
(Size: 254KB)
  FISH (fluorescence in situ hybridization) image of microbial biofilm
This FISH (fluorescence in situ hybridization) image of the microbial biofilm shows the cells of Leptospirillum group II in yellow, Leptospirillum group III in white, archaea in blue, sulfobacillus in red, and eukaryotes in green. From the biofilm sample, two near-complete and three partial genomes were recovered.
Credit: Gene Tyson, UC Berkeley
Select image for larger version
(Size: 435KB)
  FISH image of the biofilm
This FISH image of the biofilm — showing Leptospirillum in yellow, archae in blue, and Sulfobacillus in green — is surrounded by a representation of a genome sequence that indicates genes by colored bars.
Credit: Gene Tyson and Jill Banfield, UC Berkeley
Select image for larger version
(Size: 149KB)
  hand collecting samples from a toxic drainage deep in the mine
How did researchers get samples of the pink biofilm from a toxic drainage deep in the mine? Very carefully.
Credit: Brett Baker
Select image for larger version
(Size: 217KB)
  Larger versions of all images from this document
  blue arrow Note About Images

ARLINGTON, Va.—Examining life extracted from toxic runoff at a northern California mine, researchers for the first time have reconstructed multiple individual genomes from a microbial community taken from an environmental sample rather than from a laboratory culture.

According to Jill Banfield, the leader of the scientific team behind the discovery, "This takes the study of natural biogeochemical systems to a new level."

Announced Feb. 1 in the online version of the journal Nature, the research focused on a sample from a postage-stamp-sized patch of pink biofilm taken from a thin microbial layer found growing hundreds of feet underground. (Often slimy, biofilms are communities of microorganisms—such as bacteria and fungi—that grow on surfaces. Think of a kitchen sink left unwiped.) The research team found its biofilm atop a hot, flowing, extremely acidic solution—laden with dissolved iron, copper, zinc and arsenic—emanating from a mine on Iron Mountain, about nine miles northwest of Redding.

According to the Environmental Protection Agency, the mine, which shut down in 1963 after nearly a century of operations, created the most acidic mine drainage in the world, discharging—on average—a ton of toxic metals every day into the Upper Sacramento River until remediation efforts began a decade ago.

Acid mine drainage remains a significant environmental problem worldwide. Banfield, a professor at the University of California at Berkeley, said the new findings enhance scientists' understanding of the metabolic activity of iron-oxidizing microbes that greatly accelerates acid production.

Nine other scientists from Berkeley and the Department of Energy's Joint Genome Institute in Walnut Creek, Calif., co-authored the report. The study was funded by the National Science Foundation's Biocomplexity in the Environment program and the Department of Energy's Microbial Genomics Program.

According to Matt Kane, program director in NSF's Division of Molecular and Cellular Biosciences, the findings shed light on how bacteria and other microbes function collectively.

"This work simultaneously reconstructed the genome sequences for a five-membered microbial community from nature," Kane said. "It goes beyond previous achievements, such as those that sequenced the entire genome of single, isolated species or efforts that gathered genomic content from a microbial community but stopped short of constructing the individual genomes within it."

The researchers first screened several biofilms with a technique called FISH—fluorescence in situ hybridization—before settling on the particular pink sample a soup of several strains typical of acid mine drainages. They then applied to their selected community a genomics approach usually put to an individual species—"random shotgun sequencing."

This meant extracting DNA directly from the sample and a "small insert library." Once the sequences of short pieces of DNA were obtained, computer processing linked them to generate large genomic fragments that could be assigned to specific organisms within the community.

The researchers reconstructed nearly complete genomes of two organisms—strains of the bacterium Leptospirillum and of the archaeon Ferroplasma—and partial genomes of three other microbes. According to the researchers' Nature article, such recovery "from an environmental sample is an advance in the study of natural microbial communities."

According to Banfield, "The transition to this genome-level study of real populations opens the way for new understanding of speciation and evolution."

Further analysis of each organism's gene complement yielded clues about which microbes are most likely responsible for which services in this acid-adapted, self-sustaining community.

For example, organic compounds produced by the community allow it to attach to its surroundings; float at the air-water interface; and make readily accessible the oxygen, carbon dioxide, nitrogen and iron necessary for respiration and metabolism.

While researchers are unsure which organisms are responsible for creating some key polymers, they found within the Leptospirillum strain—but not in the Ferroplasma strain—the genes for making cellulose and other proteins that prevent drying out and support floatation. The genetic foundation of other critical functions, such as making carbon and nitrogen accessible to the organisms, also appears to be "partitioned among members of the community," Banfield said.


Background resources:

"NSF Awards $31.9 Million in Grants to Study Biocomplexity in the Environment," news release, October 14, 2003: "To better understand the interrelationships among living things from molecular structures to genes to ecosystems—and how they interact with their environment—the National Science Foundation (NSF) has awarded $31.9 million in 30 research grants to scientists and engineers across the country...."

"Biocomplexity in the Environment," NSF fact sheet, October 2003:

"BE/GEN-EN: Analysis of Factors Determining the Ecological Function and Resilience of Microbial Communities," abstract of relevant NSF grant:

Genome-Enabled Environmental Sciences and Engineering (GEN-EN) (from 2003 NSF program solicitation "Biocomplexity in the Environment: Integrated Research and Education in Environmental Systems): "The GEN-EN topical area invites the submission of proposals which use scientific and/or engineering approaches to develop and apply genomic information and tools to further our understanding of how organisms interact with (adjust to and modify) their environment...."

Genomes and acid mine drainage, research by geomicrobiology group at UC Berkeley: Microbes impact their environments and microbial communities are shaped by the geochemistry of their surroundings. This connection is especially clear in the case of extremely acidophilic microorganisms that live in association with weathering metal sulfide deposits.

DOE's Joint Genome Institute: Established in 1997 by three Department of Energy national laboratories, it supports genome-sequencing projects that include microbes, vertebrates, fungi and plants.

Iron Mountain toxic releases, cleanup settlement (Environmental Protection Agency news release-October 19, 2000): The settlement will ensure long-term control of more than 95 percent of the releases from Iron Mountain, historically the largest point source of toxic metals in the country, and the source of the most acidic mine drainage in the world.

For more information see:
  Professor Jill Banfield's Website:

Principal Investigator: Jill Banfield, University of California-Berkeley  (510) 642-9488 jill@seismo.berkeley.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. The NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov/start.htm
News Highlights: http://www.nsf.gov/od/lpa/start.htm
Newsroom: http://www.nsf.gov/od/lpa/news/media/start.htm
Science Statistics: http://www.nsf.gov/sbe/srs/stats.htm
Awards Searches: http://www.fastlane.nsf.gov/a6/A6Start.htm


Email this pagePrint this page
Back to Top of page