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Abstract 
Recent advances in computational resources and the development of high-throughput          
frameworks enable the efficient sampling of complicated multivariate functions. This includes           
energy and electronic property landscapes of inorganic, organic, biomolecular, and hybrid           
materials and functional nanostructures. Combined with new developments in data science, this            
leads to a rapidly growing need for numerical methods and a fundamental mathematical             
understanding of efficient sampling approaches, optimization techniques, hierarchical surrogate         
models, coarse-graining techniques, and methods for uncertainty quantification. The complexity          
of these energy and property landscapes originates from their simultaneous dependence on            
discrete degrees of freedom – i.e., number of atoms and species types – and continuous ones –                 
i.e., the position of atoms. Moreover, dynamical behavior governed by complex landscapes            
involves a rich hierarchy of timescales and is characterized by rare events that often are key to                 
understanding the function of the materials under investigation. 

To make significant advances in the crucial field of complex energy landscapes, we identify              
scientific and mathematical challenges whose solutions impact fields spanning from machine           
learning to materials science and chemistry to large-scale computational simulation. This           
potential impact includes the discovery of new materials with novel properties, enabling            
simulations across increasingly larger length and time scales, and finding new physical and             
chemical principles that guide how materials work. It also offers the potential for innovative              
insights into how complex machine learning models interpolate data and identify patterns, and             
to develop new methodologies describing uncertainty in computational models and efficiently           
propagating that uncertainty through different models and scales. We identify a range of key              
issues in the field, along with promising directions to make significant progress. 

1. Optimization Methods 
Much of the discovery of novel materials structures and processes is obtained through the use               
of optimization methods to explore complex energy landscapes. In past decades, the            
development of optimization methods proceeded mostly independently in mathematics,         
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engineering, and physical sciences. However, advances in optimization methods over the last            
decade, such as the development of interacting particle methods and surrogate models,            
illustrate the benefit of multidisciplinary research efforts. Also, the rapid increase in            
computational power has led to an explosion in available data and the capability to create               
high-dimensional models based on this data, e.g., reactive force fields and machine-learning            
models. To reap the benefits of these developments requires both a better understanding of the               
mathematical properties of current optimization methods and the development of new and            
improved optimization methods that specifically incorporate problem-specific knowledge. Many         
theoretical questions remain unanswered. 

Current status of optimization methods. Optimizers can be classified into local and global             
optimization methods. Local optimizer methods are based on gradient descent and Newton            
methods such as BFGS. Local optimization methods are often used to identify the optimal              
structure of materials, saddle points for reaction pathways, and phase transformations. Global            
optimization methods facilitate structure and composition searches for materials and the           
selection of model parameters. Several global optimization algorithms are presently available           
and include methods such as genetic algorithms, particle swarm, basin hopping, covariance            
matrix adaptation evolution strategy, and Gaussian Process Regression (GPR). Different          
algorithms employ different strategies to achieve a balance between exploration and           
exploitation. Exploration is performed by making significant changes to the structure, which can             
move between basins, while exploitation is performed by making small changes in a basin.  

Optimizers can also be classified into single and multi-particle methods. Single particle methods             
evolve with no inter-particle communication as in steepest descent or Monte Carlo methods. On              
the other hand, multi-particle methods employ multiple parallel processes communicating with           
each other and include genetic algorithms or parallel replica exchange. 

Use of prior information and surrogate models to accelerate convergence. The configurational            
spaces of interest are often high-dimensional and typically possess multiple maxima, minima,            
and saddle points scattered around in the configurational space. However, we are generally             
interested in just one or a few of those extrema, and as a result, the typical strategy of using a                    
random search is highly inefficient. The exploration can be greatly improved by using some              
external information. For example, in the case of geometry optimization, we may improve the              
convergence rate by exploiting chemical intuition, databases, and previous calculations.          
Surrogate models constructed using machine learning can also be used to accelerate searching             
by providing good initial estimates of local minima. 

Suggestions for future improvements. As we are considering larger and more realistic systems,             
efficiency is critical for the global optimization methods. Successful attempts will require the             
integrated efforts from a variety of subjects including applied mathematics, computer science,            
physics, chemistry, and biology. One way to improve the efficiency is to harvest the vast prior                
knowledge of chemistry and materials that have been previously reported or learned on-the-fly.  

2 



One way to harvest this knowledge could be to mine existing data and determine structural               
motifs such as bonding, octahedra, clusters, molecular shapes that can be identified with             
features of the energy landscape, such as local minima or maxima. This information could then               
be used to guide Monte Carlo searches or genetic operators in structure optimization.  

Most materials need to be represented by many observables. In practice, objective functions             
that include multiple properties, such as energy, forces, geometries are often needed for better              
optimization. Some of these properties are highly correlated. For that reason, it is necessary to               
make a preprocessing of the data to remove redundancy, renormalize different units and reduce              
intrinsic noise. Additionally, a metric is required to measure structural similarities (relation            
between structure and property prediction) in combination with clustering methods in order to             
increase the diversity of the training set as much as possible and also to detect possible over or                  
under coverage regions in the configuration/parameters space. 

Significant opportunities remain for the importation and application of tools from the            
mathematical sciences. For instance, potential fitting methods could be enhanced by applying a             
fully Bayesian framework. Currently, loss functions are quadratic, all data points are treated             
equally, and regularization of the coefficients is performed in an ad hoc manner. Introducing a               
prior distribution and an assumed observational noise on the measurements would allow for a              
statement of the problem in a probabilistic framework. In this setting, the optimization problem              
then corresponds to obtaining the maximum a posteriori estimate. While the observational noise             
may be somewhat artificial, we can then consider the behavior of the coefficients as we reduce                
the noise. 

A generic mathematical formulation of the interacting-particle (replica) methods used in the            
community should also be developed. Common features of mutation and evolution steps are             
apparent in all these algorithms. Such a mathematical study would establish well-posedness of             
the algorithms, e.g., the existence of a minimizer, convergence to the minimizer, and stability,              
and clarify the necessary conditions to obtain a solution. The analysis would also relate              
performance to parameter and algorithm selection. This work would guide practitioners and            
could inspire new methods. 

While many positive results have been obtained with machine learning potentials, questions            
remain. In particular, though the potentials may pass standard statistical tests such as analysis,              
how these potentials extrapolate to unknown data remains unclear – is there overfitting? If there               
is overfitting is it catastrophic? These questions could be explored in carefully designed             
numerical experiments where the potentials are “stress” tested by validating at points very             
different from the training data. 

2. Challenges for Machine Learning of Energy Landscapes 
The field of machine learning (ML) was conceived in the mid-20th century and in the past 30                 
years has seen burgeoning use in the fields of mathematics, physics, chemistry, and materials              
science. The goal of ML is to bypass expensive calculations from various physical theories with               
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minimal loss of accuracy. Landmark successes of ML methods include learning the            
exchange-correlation functional in density functional theory, obtaining accurate atomization         
energies, and screening databases of materials and molecules for application in technology and             
drug design. These successes have been achieved using several different approaches to ML             
including, among others, regressions models and neural networks (NNs). Despite this success,            
there is no good way to establish which model performs better on a given problem in advance                 
and the choice depends mainly on the shape of the dataset and the desired output.               
Kernel-based methods can be solved exactly since they can be expressed in a closed              
mathematical form with the use of a regularizer, but also can be slow to solve, since large matrix                  
diagonalization is involved. NNs are an attractive alternative to represent general nonlinear            
problems, though they need a large dataset to achieve good predictions and are harder to train.                
A mathematical foundation for many ML models is missing and the possibilities in this direction               
are potentially huge and with applications beyond materials science. We identify five primary             
challenges that are relevant to our community. The first two are general for the field of machine                 
learning, while the latter three are specific to the problem of learning effective potentials to               
describe the energy landscapes of materials and molecules. 

Learning from the Machine. Machine learning is clearly a powerful computational tool, which at              
its core is simply a clever procedure for fitting data. Black-box fitting tools can be useful, but we                  
are also interested in questions about why the data has the form that it does. As the complexity                  
of the ML model grows, the ability to interpret the fit and learn simple relationships that explain                 
the data becomes increasingly difficult. The community would benefit tremendously from tools            
and/or procedures that could provide an understandable structure from complex ML models. As             
well as being useful for providing scientific understanding, it would be helpful to inform              
researchers about the quality of the descriptors being used and how to optimize the              
hyperparameters in the model. Examples such as autoencoders could be useful for extracting             
concise information from a network. 

Hyperparameter Determination. To apply machine learning requires a "machine", which is a            
mathematical model defined by a set of parameters that can be varied to achieve a specified                
performance objective and some optimization method to determine the optimal values of such             
parameters. In the case of a NN, the machine is the network of layers and nodes, the                 
parameters are the weights of the connections and the optimization method would be a gradient               
descent algorithm. Beyond the optimized fitting parameters constrained by data, there are a             
smaller number of hyperparameters controlling structural aspects of the machine: e.g., the            
number of layers and nodes, choice of activation functions, network connectivity, etc. While             
ML’s success is due to algorithms and hardware that can determine the fitting parameters              
efficiently, e.g., TensorFlow and Theano, we lack efficient methods for the determination of             
hyperparameters. There is a strong demand for efficient hyperparameter optimization since the            
accuracy of the model is greatly influenced by hyperparameter choice. Current approaches            
include grid searches or random searches which are simple to implement and highly             
parallelizable but are not particularly efficient. The computation of gradients with respect to             
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hyperparameters can be very expensive – or even impossible – hence, future development of              
efficient gradient free techniques will be key to the continued high impact of machine learning.  

Descriptors. In the context of energy landscapes of materials, key to any ML approach is an                
appropriate choice of input descriptors which encode representative information about the local            
environments and/or interactions between atoms, but for practical purposes, are          
computationally efficient and mathematically simple. Current descriptors include the         
Behler-Parrinello (BP) symmetry functions, smooth overlap of atomic positions (SOAP), and           
bond lengths between atomic clusters. A bottleneck for future work is the lack of a systematic                
study of which descriptors work best for different systems. An important consideration is the              
growth in complexity of the descriptors with the number of elements. For example, BP symmetry               
functions encode the local environment in tens of inputs to the neural network, while SOAPs               
generate thousands of inputs. Existing descriptors can scale combinatorially with the number of             
elements in the system. An important open question is whether or not this increasing complexity               
is necessary for the construction of accurate machines.  

Long Range Interactions. Current methods for constructing machine-learned energy functions in           
materials start with local atomic descriptors; however, a wide variety of systems involve             
interactions between charged species, including charge transfer. To improve the accuracy and            
impact of ML potentials, we need to include our physical intuition about charged interactions that               
are already captured in variable charge empirical potentials and reactive force-fields. This            
provides a unique challenge, as charge interactions are long ranged, while ML potentials are              
short ranged by their very nature. “Hybrid” potentials that combine long-range interactions and             
machine-learned interactions – along with the algorithms to optimize them – are required to              
apply ML potentials for a wide variety of important material systems including complex oxides,              
interacting metal/oxide materials, and any system where charge transfer controls material           
properties. 

Challenge of Multicomponent Systems. Handling multicomponent systems with varying size and           
chemical composition requires non-standard network architecture as the input dimensions          
cannot be fixed. Variable-size sentences and images are usually preprocessed by padding with             
constants, which are later masked during training; however, such an approach runs counter to              
basic physical and chemical intuition. Implementation of masking for neural networks is an area              
of active research, and the backpropagation procedure must be altered to train            
composition-specific models simultaneously without padding. 

Uncertainty Quantification of ML Models and Dealing with Sparse Data. The most common goal              
for a ML potential is to reproduce the energy of atomic structures as compared to a higher level                  
theory, such as density functional theory; moreover, producing a physically reasonable           
description is crucial for wide applicability. This is difficult without sufficient input data to span               
the high-dimensional spaces of atomic structures. One sensible procedure is to fit forces as well               
as energies as there is more force data which provides additional information about the gradient               
of the landscape. Additionally, it would be helpful to provide physically-motivated limits for             
energies, such as a positive divergence as atoms approach each other and an asymptotic              
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approach to zero as atoms become far apart. Moreover, by using ML techniques in the context                
of materials problems, we have the option of generating the data that is used to train the                 
machine. To exploit this advantage, we need to address important mathematical and practical             
questions for different machines and problem classes: (i) How many, and which data points,              
should be generated in order to obtain a prescribed accuracy? (ii) What is the maximal accuracy                
that can be obtained with a data set of a given size? (iii) What are the techniques for identifying                   
when the machine evaluation is likely to be erroneous? The answer to these questions would               
facilitate the creation of adaptive data generation where uncertainty is quantified so that when a               
part of configuration space is reached with sparse data and high uncertainty, new data can be                
obtained in an automated manner to retrain and reduce the error of the model to a specified                 
level. 

3. Long-time dynamics 
Investigating the long-time dynamics of materials at the atomic scale is one of the fundamental               
challenges of contemporary computational sciences. While the problem is conceptually          
straightforward to solve, standard algorithms such as molecular dynamics exhibit poor parallel            
scaling, typically limited to 10-100ns of trajectory per day. As a result, the development of               
specialized techniques that are able to fully exploit petascale and future exascale computational             
resources is an active area of research. In the following, we review the state-of-the-art and               
highlight upcoming challenges that face long-timescale methods, focusing on three important           
aspects: the definitions of the effective coordinates in which the problem is cast, the problem of                
obtaining coarser models, and that of coupling between scales so as to extend the              
spatiotemporal reach of atomistically informed models. Mathematically, these questions require          
careful understanding of Langevin-type dynamics related to such models. These questions           
include an understanding of exit times from neighborhoods of local minima. Spectral analysis of              
the associated Laplace-like operators entering in the Fokker-Planck equation has been useful in             
finding lower-dimensional approximations to these models. 

Coordinates/simulation space. In complex systems, extracting long-time information often         
requires the definition of reaction coordinates or metastable states to accelerate sampling of             
configuration space. Distinct, but related, approaches have appeared in both the soft and             
condensed matter communities. 

In soft-matter systems, such as proteins or nucleic acids, defining good metastable states is              
non-trivial because of the highly heterogeneous energy landscape. Techniques that learn these            
good collective descriptors from molecular dynamics trajectories have made great strides over            
the last few years, driven in particular by Markov State Models (MSM). However, the search for                
a general and automated workflow to identify descriptors is an outstanding challenge.            
Approaches that have shown early promise combine current methods with advanced machine            
learning strategies such as deep neural networks or autoencoders, though much work remains             
to incorporate these methods into modern simulation techniques. 
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In contrast to soft materials, the metastable states of hard materials tend to be well defined in                 
terms of the local minima of the energy landscape. This regime has been well addressed by a                 
variety of methods, including adaptive-Kinetic Monte Carlo (AKMC) and accelerated molecular           
dynamics. However, systems with strong kinetic heterogeneity, i.e., when both very fast and             
very slow processes coexist, remain challenging to simulate. 

Modern simulation techniques can recover performance by coarsening states into larger groups,            
but general application of this scheme will require robust methods to define states beyond the               
metastability criterion. In this respect, insights from the simulation of soft materials, including             
recently developed kinetic state definitions, offer a promising way forward. 

Coarse-graining. High-dimensional systems are often governed by low-dimensional dynamics.         
Coarse graining into a lower dimensional space introduces its own challenges. Defining a             
low-dimensional model requires the identification of appropriate ‘effective’ degrees of freedom           
and of effective interactions that are expressed in this reduced space.  

A key requirement is that coarse-graining preserves fundamental quantities, such as           
thermodynamic or kinetics. Traditional approaches guided by physicochemical intuition have          
been very successful, but do not allow for systematic improvement. Leveraging machine            
learning and data-driven approaches offers a promising solution, but full exploitation requires            
the development of advanced metrics for quantifying the quality of the approximation.  

Scale-bridging. Efficient mesoscale methods must be used when system sizes exceed what can             
be simulated with direct approaches (e.g., when modeling signal transduction at cellular scales             
or the annealing of irradiated microstructures (both ~100 μm)). The inclusion of atomistic             
information, without requiring a full atomistic simulation, is highly desirable to systematically            
improve model accuracy. Ensuring the accuracy of upscaling methods is challenging due to the              
lack of corresponding atomistic results, and timescale separations between the meso and micro             
scales. Robust UQ methodologies are therefore required that can flag when a mesoscale model              
is stretching its validity range, and eventually trigger additional microscale simulations to            
preserve the prescribed accuracy.  

4. Surrogate models 
From excitation spectra to thermodynamic quantities. Thermodynamic modeling of advanced          
structural and functional materials typically requires free energy calculations of meV accuracy,            
i.e., in order to resolve phase transition temperatures to within a few Kelvin. Direct computation               
to these tolerances requires millions of independent samples of configuration space. High-            
throughput searches of the vast material space are thus restricted to zero temperature             
properties. This represents a severe limitation of these approaches to address real world             
engineering challenges. 

A promising solution is to employ surrogate models and efficient/enhanced sampling           
techniques. Presently, effective harmonic models are the method of choice due to the existence              
of analytic relations between the phonon (excitation) spectra and thermodynamic quantities.           
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However, using this relation for relevant operational conditions leads to unacceptable errors.            
The design of next-generation surrogate models must, therefore, capture vibrational          
anharmonicity without sacrificing numerical efficiency nor interpretability. This is distinct from the            
objective of traditional force field fitting, which attempts to capture the full potential energy              
surface.  

Open questions are: (i) Can we formally define criteria for the optimal surrogate model and use                
this insight in the construction of such models? (ii) Are there mathematical tools to identify the                
most compact representation of anharmonic degrees of freedom? (iii) Can models of            
independent oscillators be constructed that capture the full high-dimensional distribution          
function? Possible research directions could include anharmonic Einstein models or local (e.g.,            
Gaussian) basis sets as used in quantum chemistry. 
 
Knowledge transfer between disciplines. Active research in force field optimization and kinetic            
modeling offers the potential for synergy that enhances both methods: 

● Modern techniques of force field fitting have developed sophisticated similarity measures           
between configurations of atoms and molecules. Can these be used to accelerate the             
building of kinetic models in path sampling research?  

● Force fields are built to reproduce equilibrium statistics but then are usually used to              
study mechanisms. Can we combine the study of paths and force field building by              
making force fields that are targeted to reproduce the path ensemble? 

Optimal inclusion of experimental data in surrogate models. Even for well-characterized           
materials, experimental data is often too sparse for the construction of surrogate models.             
However, all practical uses of ab initio methods applicable to realistic materials have systematic              
errors. Thus, the experimental and ab initio data sets possess an intrinsic incompatibility which              
prevents a naïve combination when constructing surrogate models. Methods from the field of             
uncertainty quantification are a potential route to designing optimal measures to incorporate            
experimental data. The availability of such methods would significantly boost the predictive            
power and impact of high-throughput simulations. 

Can we learn something from the dynamical coarse-graining community who regularly confront            
the problem of determining the relevant states in very high-dimensions? What is the relationship              
between partitioning configuration space in order to build a fitting database and the basis              
functions used in the fit (which inherently provide a distance measure between points in              
configuration space)? Can the latter be used for the former in some consistent way? 

5. Efficient algorithms for spatially localized structural perturbations 
Existing ab initio electronic structure simulations have yielded, through years of development            
and improvement, results that are both accurate and efficient. These simulations provide the             
foundation for the construction and exploration of complex high-dimensional energy surfaces as            
well as constitute benchmark data for high-level modeling activity. Many of the simulations             
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depend on algorithms that assume structural uniformity and periodicity in one or more             
directions. Under these assumptions, results obtained for small regions at greatly reduced            
computational cost would then be applicable to much larger regions. However, there is a class               
of problems where structural perturbations, e.g., defects, occur either through intentional           
manufacturing or through natural processes. These structural perturbations can strongly          
influence the resulting properties of the material. The challenge is to develop methods and              
algorithms that allow one to leverage the computational procedures developed for structurally            
uniform material to create efficient and accurate simulations of structurally non-uniform           
materials.  

The general approach of combining efficient simulations of less complex problems with a             
correction step has already been used in the development of simulations of fluid and plasma               
motion. In particular, the general approach applied to tasks involving linear operators has been              
quite successful, e.g., the variance of domain decomposition techniques. However, there is a             
considerable amount of work to be done in adapting and extending these procedures to the               
linear operators occurring in the context of materials simulation. In addition, these approaches             
could be applied not only at the quantum-mechanical level but also for coarse-grained models              
such as atomistic and continuum approaches. Two main challenges consist of adapting these             
techniques in such a way that the high accuracy requirements of materials simulation can be               
met and, just as importantly, determining how to integrate any of these developed procedures              
into existing simulation packages. For materials simulations based on density functional theory,            
the non-linearity of underlying equations gives rise to a whole collection of mathematical and              
computational problems that must be addressed in order to utilize this general approach even              
more broadly. If such problems are successfully overcome, the resulting increase in            
computational efficiency would have a dramatic impact by providing high-quality simulation data            
necessary for a wide range of activities associated with the characterization, design, and             
fabrication of materials with structural non-uniformity. 

6. Efficient Hessian estimation for accelerated local optimization 
A common feature in atomic-scale simulations is the search for local minima of a system –                
whether molecules, nanostructures, or bulk material – that has an O(1000) degrees of freedom.              
Gradient-based methods are used extensively with density-functional theory, where         
Newton-based methods for optimization rely on the estimation of the (inverse) Hessian. The             
algorithms start with no, or very little, information about the Hessian for the system, and               
constructing the Hessian matrix from changes in force with displacements or perturbation theory             
is prohibitively expensive. Acceleration in the convergence of local optimizers by including            
information about the Hessian has the potential to impact multiple areas: (i) Molecular systems              
with a range of stiffnesses from covalent bonds along the backbone to dispersion interactions              
between more distant atoms; (ii) Weakly constrained portions of the system that arise from              
different interactions, such as a molecule that is weakly bound to the surface of a material; (iii)                 
Soft long-range elastic interactions combined with stiff short-range interactions as relevant, e.g.,            
for defects in materials. 
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In all of these cases, we have physical or chemical intuition about the types of interactions that                 
are present, and the structure of the Hessian; however, the optimization algorithms commonly             
used in solid-state simulations do not take advantage of this intuition. The common feature              
across all of these systems is a wide spectral width in the Hessian along with significant                
“off-diagonal” terms for the interaction of atoms, while the algorithms instead start with an              
estimate of the Hessian that is diagonal and isotropic. Bottlenecks are:  

1. Constructing a model that better respects the internal structure of the problem by using              
internal coordinates rather than using the commonly employed cartesian coordinates; 

2. Constructing a model of information about the Hessian for a given initial structure; and 

3. Providing standardized interfaces for widely-used software to take advantage of          
tools/modules that provide such optimization algorithms. 

We believe that significant progress is possible as the stiffness of atomic interactions is              
approximately known in many cases, and acceleration may not require highly accurate            
estimates of the Hessian to be effective. 

7. Benchmark problems  
Assessing the quality of novel simulation methods involves two crucial aspects: 1) comparing             
the algorithmic performance (e.g., execution time, number of iterations) against established           
methods on reference problems, and 2) assessing the accuracy of the results against a series               
of gold standards (i.e., well characterized and generally accepted) test problems established            
through extensive unbiased direct simulations. As of now, a large number of techniques to              
explore and characterize high-dimensional energy landscapes have been proposed, but it is            
uncommon to see systematic comparisons between methods, making it difficult for practitioners            
to clearly assess the tradeoffs in performance and error inherent to different approaches.  

Four major classes of computations are typically performed on such landscapes: optimization,            
dynamics, sampling, and approximation. Optimization algorithms are used to find both energy            
minimizing configurations and saddle points. Long-timescale techniques are used to probe the            
dynamical evolution of the system. In order to extract thermodynamic information, algorithms            
that efficiently sample the Boltzmann distribution induced by the energy landscape are needed.             
Finally, approximation methods, from statistics and machine learning, are also often used to             
obtain computationally cheap surrogates for the true energy landscape.  

We, therefore, propose to adopt and publish nontrivial benchmark problems. This will serve two              
purposes. First, it will allow one to select the algorithm that provides an optimal tradeoff               
between performance and errors. Second, it will allow method developers to verify that any              
newly developed algorithm is successful at solving well-studied problems, guarding against           
method and software development errors in increasingly complicated codes. 
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We propose to formulate a detailed set of criteria by which test problems and sample output can                 
be submitted to a publicly accessible website, such as http://optbench.org. For example, in             
order to insure the reproducibility of the benchmarks, all metadata, such as algorithm             
initialization, stopping criteria, and tolerances, along with notes on compilers and architectures            
used to generate the results, should be included. Benchmarks should include converged (to             
within predefined error bars) simulations on reference systems, e.g., first-passage time           
distributions for kinetics, equilibrium distribution functions for thermodynamics, in order to           
establish well-defined gold-standards. The website should provide the capability to automatically           
convert all data to different formats (e.g., plain text, xml, html) to allow for easy comparisons. 

8. Uncertainty quantification 
The importance of uncertainty quantification (UQ) in the broad areas of materials research and              
drug design is ever increasing. The common toolchain consists of some of the following              
upscaling steps: DFT → force-field development → molecular dynamics → finite element/kinetic            
Monte Carlo → higher level applications, design, and optimization. 

Unfortunately, the provision of UQ information is not well established at the initial DFT level of                
this chain. This differs from most other areas of physics and engineering and is rooted in the                 
specific challenges of the choice of the used functional for DFT calculations, as well as related                
numerical and modeling errors. Besides being unsatisfactory on its own, this also precludes             
almost all attempts of uncertainty quantification at subsequent stages of the upscaling chain and              
may affect both the predictive power of models and the ability to carry out design and                
optimization tasks reliably. Moreover, current practices focus on energy convergence, while           
recent studies by NIST show that convergence in energy alone may be insufficient to quantify               
numerical errors in DFT predictions. 

Challenges to advance the current state-of-the-art and impact broad areas of computational            
science include: 

1. Quantifying uncontrolled DFT errors: Establishment of community guidelines of         
“best-practices” for DFT to determine data scatter – a simple estimate of DFT uncertainty              
– due to the chosen functional, basis set choice, and pseudopotential. At a minimum,              
one should compare at least LDA and GGA calculations due to their relatively low              
computational cost. 

2. Quantifying controlled DFT errors: Establishment of community guidelines of         
“best-practices” for DFT with convergence studies for other quantities of interest, rather            
than just energy. Developers are encouraged to implement high-level routines to           
automate scientifically indicated routine tasks, e.g., a lattice constant or band gap            
optimization, to a given accuracy. 

3. Publication guidelines: A protocol for best-practice standards for DFT-simulations should          
be put forward as a recommendation to journals, e.g., guidelines for referees and             
organizations (NIST, IAEA, APS, ACS, etc.). Articles should provide sufficient          
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information to reproduce the published results (e.g., providing input files as           
supplementing information or available in public repositories, see Section 9          
Cyberinfrastructure). 

4. Benchmarks: The community needs to develop a small but sufficient number of            
benchmarks to test and assess DFT software, and best practices, see Section 7             
Benchmark problems. 

5. Algorithms: Development of efficient algorithms to sample computational parameters,         
e.g., functional choice, k-point mesh, etc., to efficiently propagate uncertainty from DFT            
through material models. Overcoming this barrier offers the promise of making           
uncertainty quantification routine for a wide variety of material computations. 

6. Applying stochastic frameworks: Coarse graining problems and dynamical path         
problems are inherently statistical problems, so fits need to be robust to noise. Forcefield              
fitting problems appear to be noise free, but this is only in the statistical sense, as the                 
limitations of model representation make fits inexact. Is a stochastic framework still            
suitable for quantifying errors? 

9. Cyberinfrastructure 
Leveraging available computational resources on different platforms with high-throughput         
workflows requires increasingly complex simulation protocols. This complexity hampers not only           
the development but also the interdisciplinary exchange between fields. Therefore, a shared            
cyberinfrastructure ecosystem is essential to foster sharing of data and methods, including            
several needs in software development. 

Optimization Algorithm Ecosystem: An extensible software framework for landscape searches          
and model optimization would advance the development and application of current and newly             
developed methods. Currently, users – whether amateurs or experts – have difficulty comparing             
different optimization approaches due to a lack of interoperability. An optimization algorithm            
ecosystem that could provide access to many different types of optimization methods and model              
representations for versatile applications can be leveraged for many of the challenges            
previously identified. Benchmarking requires spanning: one-particle methods, such as simulated          
annealing and basin hopping; many-particle algorithms, such as replica exchange/parallel          
tempering, genetic algorithms, and swarm algorithms; and frameworks such as Bayesian           
optimization and bandit approaches. In addition, new hybrid approaches to optimization would            
become possible, e.g., switching between and coupling of optimization methods in a nested             
way, or using active learning to make autonomous decisions on-the-fly on which optimization             
algorithms and surrogate models to use. If a range of model representations are included for (i)                
structures, ranging from molecules and clusters to fluids and crystals, and (ii) models ranging              
from empirical potentials to machine-learning models, then the suitability of different           
optimization approaches for different problem domains can be established for the community.            
To be sustainable, software development will require modern software engineering principles           
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and integration with various existing optimization and surrogate model packages (see           
Community Building below). Finally, integrating materials and model databases with the           
optimization ecosystem will synergistically increase the impact of both.  

Machine Learning Software for Energy Landscapes. There is a growing list of machine-learning             
software packages with overlapping feature sets. Keras, for example, is a high-level API for the               
construction of NNs using TensorFlow as the computational back end that is particularly             
attractive due to its continuous development and support by Google as well as its ubiquity               
across the ML community. However, since Keras was not developed with application to             
molecular and material systems in mind, it lacks the flexibility to design variable hierarchies to               
learn features at different scales and to extract derivatives for atomic forces. A ML software               
toolkit that builds upon the existing Keras functionality and TensorFlow efficiency, and extends it              
for the study of energy landscapes and related models, would provide an important tool for the                
study of materials. 

Databases. High-quality databases are necessary for exploring energy landscapes that benefit           
several key areas such as building atomistic and coarse grained force fields, validating and              
benchmarking new search and optimization algorithms, and accumulating prior knowledge for           
speed-up. Currently, there are some cases that the same distribution is used for testing a model                
as for training because of the lack of available credited databases. When transferability to              
different sampling distributions is desired, it necessitates the creation of combined databases to             
cover properties and observables. Additionally, quantitative measures of transferability are          
needed for proper evaluation. Several efforts of individual groups and small teams are providing              
databases for small molecules, nanoscale, and bulk materials, e.g., https://materialsproject.org,          
https://aflowlib.org, https://oqmd.org, http://www.crystallography.net/cod/, and    
https://materialsweb.org. It would be helpful for the community to have common API’s to access              
these databases and to provide access to all these databases from a central web server.               
Databases are also needed for the surrogate models such as for machine-learning and             
empirical potentials and for benchmarks, where the OptBench site http://optbench.org/ presents           
an excellent place to start. 

Community Building. The development of sustainable cyber-infrastructures requires community         
participation, continuity, and leadership. Open-source development, establishing software        
design principles, and coding best practices are essential for community participation in            
software development. Regular hackathons and coding workshops can provide the needed           
continuity for building, maintaining, and expanding shared code infrastructure and databases.           
These efforts can also serve as a vehicle for community building, training of the next generation                
of scientists and engineers, and broadening the participation of underrepresented groups.           
Funding of software development efforts, centers, institutes, and training by NSF and other             
agencies provides the needed leadership for the advancement of these cyber-infrastructures           
and ensures that we continue to harvest the benefits of these investments. 
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