
1 
 

White Paper: 

Science at Extreme Scales: Where Big Data Meets Large-Scale Computing 

IPAM Long Program, Fall 2018 
 

Author list (in alphabetical order) 

Chris Anderson, Samuel Araki, Petter Bjørstad, Hans-Joachim Bungartz, Keiko Dow, Claudia Draxl, 

Marco Duarte, Ionut-Gabriel Farcas, Longfei Gao, Jochen Garcke, Pietro Grandinetti, Philipp Haehnel, 

Mojtaba Haghighatlari, Jeffrey Hittinger, René Jäkel, Frank Jenko, David Kim, Robert Martin, Erin 

Molloy, Saerom Park, Matthias Scheffler, Jannik Schürg, Eder Sousa, Justin Sunu, Chee Wei Tan 

 

Contents 

Executive Summary 

1. Introduction and Background 

2. Trends on the Path Toward a Predictive Science 

3. Scientific Understanding and Machine Learning 

4. Information Integration 

5. Removing the Showstoppers of Big-Data Driven Science  

6. Data Reduction 

7. New Algorithms 

8. Outlook 

Glossary 

 

  



2 
 

Executive Summary 

Computing has revolutionized science: simulation, or model-based computing, has allowed us to 

investigate phenomena much more complex than theoretical analysis alone can access, and now data-

based computing is allowing us to more effectively explore, understand, and use data resulting from 

experiments, observation, and simulation. The simulation community has for long driven High 

Performance Computing (HPC), and the data science community has driven the Big Data (BD) revolution. 

These two computing approaches have usually been addressed independently, but the need for HPC in 

data-based computing and the overwhelming availability of data in model-based computing indicates that 

the integration of HPC and BD can form even stronger links between theory and experiment or 

observation, a bridge enabling the fusion of the two communities’ methodologies. By hosting this Long 

Program, IPAM took a lead in fostering fruitful conversations across a range of scientific disciplines, 

allowing the mathematical and neighboring sciences communities to consider this topic of groundbreaking 

potential both in a deeper and a broader manner. 

This convergence comes at a critical time. We are entering a period where we have the capability to 

transition from interpretive qualitative models to truly predictive quantitative models of complex systems 

through computing. However, to realize this goal, we must deal with increasing complexity in models, 

algorithms, software, and hardware. The exponential growth in computing capability driven by Moore’s 

law is stalling, and HPC hardware architectures are necessarily becoming more complex. Accordingly, to 

implement the more complex models as well as to make good use of these new architectures, algorithms 

are becoming more complex, too. The fusion of theory- and data-based computing concepts will help tame 

this complexity and access more of the available computing power.   

The new computational science, which will advance by leveraging the best of simulation and data science, 

is not, however, a foregone conclusion. Much work remains to be done. To further advance scientific 

understanding through data analysis techniques such as Machine Learning (ML), methods must be devised 

to exploit domain knowledge and to enable the interpretation of ML-derived models. Information 

integration is a paramount step towards a predictive science, but existing approaches have limitations that 

become evident in large-scale applications. The logistics of data management are not to be overlooked as 

an area in need of advances; data must be findable, accessible, interoperable, and re-usable to enable this 

theory- and data-driven future. Data and information are not the same thing, and we must make judicious 

use of all forms of data reduction techniques to preserve the information content efficiently. Finally, both 

the changing hardware landscape and the increased availability and use of data will require the 

development of new algorithms. In this report, we summarize the ideas that came up during at the many 

discussions during the IPAM Long Program, describing in more detail these topics and the outlook for a 

new computational science paradigm. 

1. Introduction and Background 

The breathtaking progress in both computer technologies and advanced methods to effectively and 

efficiently exploit them opens the door for a “new kind of science” at the beginning of the 21st century. 

This paradigm change has been brought about by two waves of innovations. The first wave primarily 

focused on HPC. Simulations and optimizations enable breakthroughs in the fundamental understanding 

or improvement of processes and systems in various domains of science and engineering. The second 

wave, which started later, aims at the comprehensive modeling of natural science, engineering, and 

societal phenomena in a data-driven way, with an even broader impact, also reaching the social sciences 

and humanities. Datasets from observations, experiments, simulations, imaging, digitization, or social 

networks as well as business or patient data are collected, processed, and analyzed. 
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Currently, the themes of HPC and BD – including, in particular, data engineering and data analytics – are 

usually addressed rather separately. The interactions between the respective communities in scientific 

computing, statistics, machine learning, and data engineering are rather limited. However, it has become 

increasingly clear that HPC and BD are intrinsically linked. E.g., HPC needs input data of various kinds 

for simulations and produces output data to be analyzed, while BD needs HPC for managing and analyzing 

large datasets to extract highly complex, non-parametric models for inference. Data from simulations can 

be used to better design experiments, while data from experiments can provide better or better fitted 

models. Most importantly, only together can they pave the road towards a “predictive science” that has 

been the goal since the first days of simulation and is crucial for any reliable computational support of 

design and decision-making. This aim is at the very heart of the present Long Program: helping to advance 

the state-of-the-art in computational technology, i.e., HPC and BD, in a holistic and synergetic way in 

order to facilitate the creation of new paths to insight and prediction in various scientific domains. 

In HPC, as both hardware and software are approaching the exascale, one of the key challenges is to 

overcome the communication bottleneck. Data motion tends to clearly limit the performance and 

determine the enormous energy consumption of future supercomputers; some even say “flops are for free.” 

Thus, it is crucial to develop novel ways of efficiently representing, reducing, reconstructing, transferring, 

and maybe even avoiding huge amounts of data, including the design of new algorithms. Meanwhile, the 

analysis of very large datasets – originating from some kind of simulation, measurement, or tracking – 

requires increasingly sophisticated data analytics, which turns ever more compute-intense itself and thus 

becomes a major customer for HPC. In this sense, HPC and BD technologies are intrinsically linked, and 

the latest insights, methods, and algorithms have to be considered jointly in this context. 

The fusion of HPC and BD is a new, emerging field of research with an endless number of applications 

and an enormous game changer potential. The present Long Program was aimed at being a catalyst at this 

frontier of science by bringing together leading innovators and pioneers from applied mathematics 

(scientific computing, optimization, data analytics, statistics etc.), computer science (HPC, data 

engineering, data analytics, visualization, imaging etc.), and various applications areas, allowing to expect 

a particularly high degree of cross-fertilization and breadth of impact. 

The timeliness and importance of the present theme — the “convergence” of BD and HPC — is 

highlighted, among other things, by the fact that it has been identified as critical by the science agencies 

of the G-8 countries who have supported a series of workshops (see: www.exascale.org) since 2013 to 

examine the prospects of such a convergence. It is critical because the number of computer architectures 

that will be taken to the exascale is very limited, as are the resources to develop them. The feasibility of 

one architectural design to support the applications and workflows of both communities would greatly 

accelerate the path to computationally enabled scientific discovery for each. The workshop participants 

have identified conferences and workshops that foster a unification of the computationally intensive and 

data intensive research communities as a priority that could pay large dividends. 

The communities are currently compartmentalized and do not easily recognize each other’s vocabulary or 

scientific aesthetics; consider, e.g., physicists who deal with the data coming off the large hadron collider 

and physicists who solve the partial differential equations of lattice gauge theory in an attempt to 

understand precisely the same particles. Their software and the stresses they place on hardware are so 

different that separate computing facilities have grown around each, but this is not a scalable research 

model in a time of limited resources and talent. The same could be said for climate modelers integrating 

global observations and those running global simulators. Similar things are true is plasma physics, 

materials science, and many other domain sciences. Applied mathematicians and statisticians bring as 

vital a set of voices to this dialogue as computer scientists, yet they have not been engaged as much as 
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computer scientists to date. By hosting the present Long Program, IPAM took a lead in fostering fruitful 

conversations across a particularly wide range of scientific disciplines, pulling into the view of the 

mathematical sciences community a topic of groundbreaking potential. 

2. Trends on the Path toward a Predictive Science 

Science is fundamentally a process for understanding and shaping the world around us, ultimately with 

the goal of using this knowledge for reliable predictions to the benefit of mankind. The scientific process 

has been revolutionized through computing: simulation, or model-based computing, has allowed us to 

investigate phenomena much more complex than theoretical analysis alone allows, and now data-based 

computing is allowing us to more effectively explore, understand, and use data resulting from experiments, 

observation, and simulation. We now are entering a period where we have the capability to transition from 

interpretive qualitative models to truly predictive quantitative models of complex systems through 

computing. However, to realize this goal, we must deal with increasing complexity in simulations and 

hardware. Addressing this complexity will require a broader definition of computational science (and 

practitioners thereof) that embraces a more holistic approach to simulation, data management, and data 

analytics. 

The Complexity of Hardware 

The success of model-based computing has been driven significantly by advances in hardware for HPC. 

However, the hardware environment is entering a period of significant change and variation. Physical 

limitations have stalled increases in processor clock speed (the end of Dennard scaling) and quantum 

limits will soon limit further reductions in transistor size (the end of Moore’s law). Traditional memory 

technologies (both capacity and bandwidth) are improving more slowly than microprocessor capabilities, 

shifting processing costs from operations to data motion and latency. The computer hardware industry has 

responded to these challenges by moving to increasing heterogeneity: multiple processors with different 

characteristics (e.g., GPUs and CPUs) and deeper memory hierarchies with high-latency non-volatile 

technology augmenting traditional low-latency volatile memory. Research is ongoing into new materials 

and structures for microelectronics to replace traditional CMOS technology, such as TFETs and 

spintronics, and again, these technologies will have different characteristics (e.g., clock speed) than 

traditional MOSFET technologies. New transistor technology is at least a decade away, so in the short 

term, some manufacturers are generalizing the concept of processors to processing packages, a 

combination of general-purpose CPU, specialized processors like GPUs, and closely integrated memory. 

It is likely that these packages will become even more diverse, including other technologies like FPGAs, 

phase change memory, processor-in-memory, and three-dimensional memory technologies. Making 

efficient use of such heterogeneous hardware will be a significant challenge. In the longer term, quantum 

and neuromorphic processors, which have the promise to revolutionize certain specialized calculations, 

may also appear as additional co-processors in HPC machines. It is likely that computational workflows 

will increasingly use stream (or dataflow) processing. Cloud computing, though high latency, provides 

additional specialized resources that could be confederated with traditional HPC resources and specialized 

database hardware to enable more complex simulation workflows. 

The Complexity of Algorithms 

The changes in computing hardware pose a challenge but also a tremendous opportunity. To leverage 

these capabilities, software and algorithms will necessarily become more complex. Mapping algorithms 

to specific hardware where they perform best will be necessary. Means to reduce synchronization and data 

motion will be needed to make good use of the large number of processing units while combating 

bandwidth and capacity limitations. More dynamic runtime systems, which identify and execute 
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concurrent operations, may play a more important role to achieve good machine utilization. In addition, 

one can envision combining model-driven and data-driven capabilities to more efficiently, accurately, 

and/or rapidly solve very challenging scientific problems. Simulations could be augmented by data-driven 

models of constitutive of “sub-grid” physics. Taking this a step further, ML techniques are already 

showing promise in scale-bridging, allowing detailed coupling between micro- and macro-scale physics. 

ML models may also be useful in dynamically controlling simulation algorithms, partitionings, 

preconditioners, etc. Conversely, simulation and theory may be useful in guiding learning techniques, 

augmenting datasets, and constraining training to be consistent with physical principles. 

Computational Science 2.0 

It should be clear from these observations that the future of computational science includes both data-

driven and model-driven techniques, not as separate endeavors, but integrated to realize a more predictive 

science. Practitioners of this evolution in computational science must have at least an “appreciating 

awareness” of simulation, data analytics, data management, and computing architectures. This future 

therefore calls for more interdisciplinary training and more interdisciplinary collaboration, as it will be 

difficult to master all topics in great depth. 

3. Scientific Understanding and Machine Learning 

An exciting and relatively recent development is the uptake of ML in the sciences, where one aims for 

scientific discovery from data. Success of this so-called “Scientific ML” needs the integration of domain 

knowledge into ML models and coherent workflows, and the interpretation of the obtained ML models, 

which are actually two sides of the same coin. 

Exploiting Domain Knowledge 

Examples of domain knowledge include detailed mathematical descriptions of the particular phenomena, 

a dataset from simulations of a dynamical system, or the specification of a set of physical or chemical 

constraints for feasible solutions. The field of Scientific ML aims to incorporate this into existing or new 

ML models, in particular for the analysis and modeling of causal relationships.  

Black-box data models face challenges in application areas that involve complex physical phenomena or 

lack labelled data. Incorporating knowledge of the underlying causal process can improve the consistency 

of the data model, e.g., when predicting surface stress coefficients from turbulence flow data, which can 

be described as the preservation of certain invariants or symmetries. Knowledge incorporation also finds 

relevance in classification tasks and natural language processing. Moreover, it improves the 

interpretability of the data model, which will be beneficial for subsequent scientific development, as will 

be discussed later. E.g., prior knowledge of the underlying physical process can help selecting relevant 

information to feed to the data model. Afterwards, it can help curating the outputs generated from it, also 

with the aim of data reduction, as outlined in the corresponding section below. Additionally, domain 

knowledge, often formalized by mathematical concepts, can be used to enhance the process of construction 

or validation of the data model.  

In the following, we concentrate on approaches that incorporate domain knowledge in the data preparation 

and modeling workflows which have been discussed explicitly during the Long Program. The majority of 

the presented research has a focus on the design of Neural Networks (NNs), mainly due to the flexibility 

in designing deep learning architectures guided by scientific knowledge. For instance, convolutional long-

short term memory can be used to incorporate time-varying domain characteristics in diffusion of 

contaminant in soil and weather pattern. In addition, plasma physics and machine learning were combined 

in the deep learning architectures for a more reliable prediction of disruptions in magnetically confined 
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fusion plasmas. In chemistry, incorporating the organic chemical reaction information into the attention 

mechanism of sequence-to-sequence models provides competitive prediction accuracy. Another important 

approach to incorporate scientific knowledge in data-driven models is through loss functions and 

regularization terms in the mathematical formulation of learning problem.  For instance, a “physics-based 

loss function” was introduced to enhance the scientific consistency of predictive models for lake 

temperature or air pollution. 

Domain knowledge has long been used in the data preparation steps of the modeling workflow such as 

data augmentation, sampling of data, or feature transformation and selection. For example, recent progress 

in the incorporation of chemical domain knowledge in the design of ML training datasets yields some 

important insights for the exploration of the vast chemical space. Furthermore, ML models trained on data 

subgroups make effective use of the sparse materials space. Additionally, in the field of molecular 

dynamics, image classification and object detection via Deep Neural Networks (DNNs) can be enhanced 

by removing redundant images corresponding to multiple rotations or illuminations of a given object. This 

removal can be achieved in real-time during the data generation process. Another example appears in 

mechanical engineering, where mathematical geometric-aware representations of data stemming from 

deformed surfaces enables an easier virtual product development process in the automotive industry. 

Understanding Machine Learning Models 

Recently, there has been a significant effort in trying to better understanding how a specific ML model 

operates and why certain decisions are produced, particularly in view of the empirical success of deep 

learning approaches. In the ML community, this is often referred to as interpretability, with varying 

concepts of what this actually implies, and the underlying hope of explaining the predictions of a model. 

The need for interpretability arises from several motivations.  

In the sciences, one such motivation is scientific understanding, where the goal is to convert ML-derived 

explanations to knowledge: causal relationships might be inferred from observational data or, 

alternatively, useful information for scientific purposes can be obtained. Pursuing these motivations 

allows for an easier dissemination of the potential benefits of ML to the scientific community. Several 

examples of ML driven by this motivation were discussed in the Long Program. When considering an 

event controlled by a dynamical system, the data observed can be fed to nonlinear manifold learning 

algorithms to infer the underlying structure of the system. In phylogeny, correlations between genomes 

from a variety of animal species can be modeled using tree graph priors to infer evolutionary relationships. 

In genome-wide association studies, the ML model identifies correlations between genes and disease 

indicators. More generally, it was observed that a common motivation behind the application of 

unsupervised learning methods is the need for exploration, explanation, and understanding of the event 

described by the data. 

For more practical purposes, i.e., when using deployed ML models for scientific purposes, one is interested 

in robust and reliable decisions. The interpretability of an ML model can determine whether the model 

will work in non-stationary environments, or even when its use might have an effect on the environment, 

altering the underlying assumption of having data from the same distribution while training and applying 

the model. For example, when generative adversarial networks modeling inertial confinement fusion are 

designed to be physically consistent, the underlying data model can predict key physics information, 

leading to improved generalizability to a variety of simulation datasets.  

Another aspect where interpretability can help is the gap between the employed loss function used for 

model training and the actual quantity of interest in the task. Not all requirements can be framed by a 

suitable loss function; usually, the loss is a proxy for the actual goal, and in some cases one can consider 
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the case of multiple objectives. E.g., ML has been applied to functional magnetic resonance imaging 

(fMRI) data to design biomarkers that are predictive of psychiatric disorders. However, only “surrogate” 

labels are available (e.g., behavioral scores), and so the biomarkers themselves are also “surrogates” of 

the optimal descriptors. 

Attaining Interpretability 

While the need for interpretability is widely accepted, what interpretability actually implies does vary 

widely. According to the recent literature, there are two ways to confer interpretability. 

On the one hand, a model is called transparent, if it becomes clear how the model operates. One can define 

this as follows: a transparent model provides a mapping of an abstract concept (e.g., a predicted class) into 

a domain that the human can make sense of. For example, the similarities between the multilayer 

perceptron architecture and the physical model for transmission electron microscopy (TEM) makes the 

application of the former architecture to the latter scientific domain transparent. Similarly, an application 

of ML for epidemiology leverages a networked dynamical system model for contagion dynamics, where 

nodes correspond to subjects with assigned states; thus, most properties of the ML model match the 

properties of the scientific domain considered. 

On the other hand, post-hoc explanations can be made in order to extract information from learned models. 

Formally, an explanation is the collection of features of the interpretable transparent domain that have 

contributed for a given example to produce a decision (e.g., classification or regression). Regression, in 

particular, has been leveraged often in Scientific ML to explain phenomena. Examples include the design 

of property maps from few physical descriptors in materials discovery, and the formulation of reduced-

order models for partial differential equations via lifting.  

Often, direct approaches are undertaken to present this information via visualizations of learned 

representations, natural language representations, or the discussion of examples. Nonetheless, human 

interaction is still required to interpret this additional information, which has to be derived from the learned 

model during the post-hoc analysis. For example, in the previously mentioned application in fMRI, the 

biomarker design promotes spatially compact pixel selections, producing biomarkers for disease 

prediction that are focused on regions of the brain; these are then considered by expert physicians. 

From the perspective of mathematics, a core contribution to the understanding of ML algorithms is their 

mathematical interpretation and derivation, which help to understand when and how to use these 

approaches. Classical examples are the Kalman filter or principal component analysis: several 

mathematical intuitions exists for each of these tools. In addition, numerical approximation and 

convergence theory are an important ingredient when understanding function approximation, as it arises 

for regression and classification tasks with for example deep learning algorithms or kernel based methods. 

Future Directions 

Looking forward, while interpretability can be defined in terms of transparency and explainability, a 

formal mathematical evaluation of these concepts remains elusive. Heuristics such as requiring 

neighboring data points to have very similar explanations provide criteria for the form of the explanation, 

but do not measure the quality of an explanation. In the end, it seems one will need to involve human 

evaluation of the quality of an explanation; however, the design of reasonable and efficient methods for 

human involvement in evaluation that avoid human bias is an open research question. 

Concerning domain knowledge, one needs to further investigate which combinations of scientific 

knowledge and simulations will lead to the highest degree of generalization. While the discussion focused 

on supervised learning problems using manually labeled data, theory-guided data science can also be 
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applied to unsupervised learning and semi-supervised learning. For the deployment of a ML model, its 

robustness under changing environments is of utmost importance, also in view of quantifying the 

uncertainty of ML models. A still ongoing challenge is to develop further mathematical theorems for 

performance guarantees, and to evaluate and classify ML models through mathematical terms, such as 

topological or geometrical quantities.  

The aforementioned aspects of Scientific ML (will continue to) involve a combination of domain science 

and ML expertise, where mathematics helps to build a bridge between the domains. We envision that in 

the future, theory and domain knowledge should guide ML towards a modular learning process, where 

the inclusion of human expert understanding of the domain science will be a module of the learning system 

that allows for knowledge discovery from data. 

4. Information Integration 

In order to gain insight into complex real-world systems, scientists perform physical and computational 

experiments, generating massive amounts of data. Extracting scientific knowledge from these datasets can 

be challenging for many reasons, including well-known limitations of experimental data. For example, in 

a physical experiment, measurements are collected using physical devices (e.g., sensors), resulting in noise 

or other sources of measurement error. Furthermore, it may not be possible to directly measure the quantity 

of interest in a physical experiment, and thus, the quantity may need to be observed indirectly by 

measuring a related quantity. Similarly, in a computational experiment, data are simulated using a 

mathematical model that may not fully characterize the complex dynamics of the system; thus, the 

resulting simulated data may fail to capture important physical properties of the system. In order to 

overcome the limitations in using a single information source, we need a coherent framework for 

integrating information coming from multiple sources. In this section, we describe several promising 

approaches for information integration and their potential for a predictive science. 

Bayesian Inference 

An important step towards predictive numerical simulations involves the fusion of numerical models with 

experimental data. To this end, Bayesian inference provides a natural framework to combine models with 

experimental data, because the solution of a Bayesian problem provides a quantification of the uncertainty 

stemming from measurement or other error sources. The inherent uncertainty associated to studying these 

systems necessitates a departure from the classical deterministic realm of modeling and simulation. 

Consequently, our main building blocks can no longer be deterministic, but instead we must operate within 

the context of probabilistic models. Bayesian inference provides a systematic framework to understand 

complex physical models in the context of the observed data. In the resulting Bayesian inverse problem, 

model parameters are inferred using the observed data and the underlying mathematical model, and the 

solution is a probability density function which characterizes the uncertainty in the model’s input 

parameters given the observational data. By reducing this uncertainty in model parameters, we can begin 

to understand the underlying physical system described by the data. 

 

Transfer Learning 

Transfer Learning (TL) has emerged as a new learning technique for improving the learning result of one 

problem by integrating the learned knowledge from another related problem. In a broad sense, theory-

guided data science is a good example of TL, because it enables knowledge transfer from different data 

types which are closely correlated. In TL, this correlation is important in order to avoid degraded 

performance of learning (called negative learning). In addition, introducing a deep learning framework 
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for scientific data analysis can seamlessly synthesize structured prior knowledge (e.g., differential 

equations, conservation laws, etc.) as well as heterogeneous data (e.g., model predictions at multiple 

scales/resolutions, images, time series, scattered measurements, etc.). TL, with the help of Bayesian 

inference, allows us to fill in the gaps that individual heterogeneous data sources present, and to combine 

data and scientific knowledge into a unified predictive model for science. 

Uncertainty Quantification 

Uncertainty Quantification (UQ) is a systematic approach to quantifying and reducing uncertainties in 

numerical simulations. These uncertainties can arise due to incomplete knowledge or intrinsic variability 

in the physical system. UQ is an example of an outer-loop scenario, in which a mathematical model (or 

another information source) is evaluated multiple times in order to assess statistical quantities of interest 

(e.g., mean values, standard deviations, etc.). Although UQ is paramount for predictive science, it can be 

computationally expensive and thus infeasible for complex systems. Advancements in hardware and 

computational resources are not sufficient to enable the application of techniques from UQ on complex 

physical systems. We also need advancements in algorithms, e.g., so to exploit the underlying problem 

structure in order to reduce computation and storage requirements. A recently developed UQ technique 

that can bridge the gap is the multi-fidelity methodology. 

Multi-Fidelity Methods 

The extensive body of research in model reduction or ML provides ways to obtain so-called low-fidelity 

models, i.e., information sources that are less accurate than the high-fidelity model, but that require less 

computational effort. However, reduced or ML models are traditionally designed to replace the high-

fidelity model. Note that these models are generally obtained using high-fidelity model evaluations (e.g., 

interpolation). Thus, the standard approach of UQ in numerical simulations entails using only one model 

(or information source). Particularly in applications which require high-performance computers for a 

single simulation, creating accurate low-fidelity models can still be computationally too expensive. In 

addition many reduced or ML low-fidelity models of different accuracies are typically readily available 

in most applications. 

 This calls for a paradigm shift in addressing UQ, particularly in large-scale simulations. One of the most 

promising new approaches is the so-called multi-fidelity method. Instead of replacing the high-fidelity 

model with a low-fidelity information source, the multi-fidelity framework brings together high- and low-

fidelity models such that the cheaper, less accurate models are leveraged for computational speedup while 

the computationally expensive model is kept in the loop to guarantee that accuracy and converge are 

preserved. 

To guarantee that accuracy and convergence are preserved, and to distribute work among the underlying 

information sources, multi-fidelity methods employ a model management strategy such that the work 

division is proportional to the computational cost of the underlying models. It is important to note that not 

all low-fidelity models need to be accurate for the method to work well, but rather the interaction between 

the models is what drives the efficiency of the multi-fidelity computation. Therefore, a heterogeneous set 

of low-fidelity models which interact with each other is more beneficial than having very accurate but 

disconnected information sources. 

Multi-fidelity approaches have been successfully employed in a number of applications, and the current 

extensive research efforts clearly show the interest in employing multi-fidelity methods in very complex, 

real-world applications. In addition, besides quantifying uncertainty in complex systems, multi-fidelity 

methods are also used in optimization or parameter inference. Especially on future exascale computers, 
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multi-fidelity approaches are among the few promising candidates which could realistically enable UQ in 

large-scale simulations. 

The model management strategy in existing multi-fidelity approaches for UQ does a static work allocation, 

and it is furthermore assumed that the low-fidelity models are readily available. To extend this framework, 

current research focuses on transforming the static approach into an adaptive multi-fidelity method in 

which the low-fidelity models are created dynamically relying on approximation and cost rates. The long-

term goal is to have fully adaptive multi-fidelity methods that dynamically create the underlying low-

fidelity models by exploring and exploiting the structure of the problem at hand. 

Future Directions 

Information integration is a critical step on the path toward predictive science. While several promising 

approaches for information integration exist, their limitations become quickly visible in large-scale 

applications. Thus, to cope with the ever increasing complexity of these applications, enhancements in 

many computational and algorithmic aspects are necessary. Moreover, approaches for information 

integration must be validated in the context of specific applications, and thus, the advancement of such 

methods depends on scientific communities making large and heterogeneous datasets accessible to method 

developers. 

5. Removing the Showstoppers of Big-Data Driven Science  

Presently, science is often (still) characterized by the fact that BD are typically just useful for the research 

group that created them and maybe a few close collaborators. This is because data are usually not fully 

characterized. Taking the example of natural, engineering, or medical sciences, individual researchers and 

research groups argue (or act under the assumption) that details of sample preparation or the exact 

procedure of the investigation may give them a competitive advantage and therefore are better not fully 

revealed. Obviously, this culture has to change if we like to take full advantage of BD to advance science. 

Equally important is the fact that sharing is complicated because of a missing efficient data infrastructure. 

Organizations that run the latter in an non-bureaucratic, efficient, and user-driven manner are not yet in 

place. As noted in a Nature Editorial (June 2017): “Governments, funders, and scientific communities 

must move beyond lip-service and commit to data-sharing practices and platforms.” 

FAIR Principles 

A change of scientific culture and application of the FAIR principles are the key issues, where the latter 

involve metadata, workflows of the data creation, data curation, and the underlying hardware. In this 

context, data curation aims at organizing the complete dataset by incorporating information from different 

data sources and constantly updating the database with new information (knowledge extraction). In FAIR, 

the F stands for findable. Keeping research data for at least ten years is now requested by many research 

organizations, and is useful to get research groups and individual researchers better organized. Avoiding 

duplication of work, it saves human and computational resources. Clearly, making data findable requires 

proper data infrastructures, including documentation, search engines, and hardware. The A stands for 

accessible. Accessibility has different facets, including the proper hardware that allows for swift access 

to data and the provision of application programming interfaces (APIs). Extremely useful for getting first 

insight into data is to provide the data not only in a machine-readable but also in a human-accessible form. 

The I stands for interoperable. This is the biggest challenge as we need to consider that data from different 

sources may be extremely heterogeneous. Consequently, the necessity arises to make this data 

comparable, which requires bringing them to a common format, having knowledge about the data quality, 

and being able to rely on a robust formal description of the data (metadata). We also recall that one quantity 
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may be named differently in different (sub-) communities or one and the same expression may have a 

different meaning in one or the other area. Thus, “dictionaries” are needed to translate between them. 

Finally, The R stands for reusable. It means that we can use data that has been created for some specific 

question in a different context: in other words, they are repurposable. 

Despite the aim of keeping data according to the FAIR principles, communities need to consider the trade-

off between communication cost (reading out data from the storage) and recreation. In particular, when 

data can be reproduced, it might be more efficient to store only the most relevant information (e.g., the 

input and major output files of a calculation; sample, workflow and information about the setup of an 

experiment; and alike). 

Present Status 

In the spirit of open and easily accessible datasets, a flexible management to connect to agile compute 

architectures is desirable. In the HPC community, data management is still organized merely by individual 

(sub-)communities or projects, and handled individually. Either data is produced on site (e.g., via 

simulations), or transferred before computation and stored in a parallel file system. So far, the data 

management aspect is focusing almost entirely on optimizing parallel access to the distributed storage 

system and on fast and concurrent access to the storage layer from compute elements. Outside HPC – 

driven mainly by the desire to use state-of-the-art servers (usually relying on standard internet connectivity 

rather than fast interconnects like in HPC) by companies to manage their datasets – a complementary 

paradigm has evolved to execute analytics tasks close to the data where it is located in a purely distributed 

manner. This was motivated by the fact that large datasets are hard to copy or move to a central computing 

system and hard to be updated if changes produced by analytics processes need to be incorporated. 

Nowadays, this simple MapReduce paradigm is applicable only for a limited class of analytics tasks and 

not flexible enough for iterative and learning scenarios. From the compute perspective, HPC architectures 

provide a much better environment for in-memory and ML applications. Nonetheless, especially for data-

intensive applications, the fact that technology-wise the compute capacity is evolving faster than the 

ability to store and access data represents a limiting factor. Here, an intelligent data management and 

access scheme needs to be developed in order to speed up the Input/Output (I/O) phase of analytics 

applications, especially at scale. 

Future Directions 

For scalable analytics on HPC systems, the concept of burst buffers and data movers have been introduced 

to select and move data from the central data storage close to the actual compute element for analysis. 

This reduces the latency in the I/O stage during computing, but requires manual mapping of selected data 

subsets to the allocated compute resources and lacks advantages of a full data managements system as 

described above. This specific way of mapping of data and compute is hard or even impossible to transfer 

to other analytics scenarios; instead, it needs to be adapted to any given situation, and this burden is 

nowadays completely on the user side. Here, a curated data and metadata middleware can provide a 

transparent interface not only to describe and organize the data access, but also to define how data needs 

to be processed. To be able to describe the analytics workflow, the metadata description could to be 

extended towards a process description, rather than just describing the content and semantics of the 

dataset. Another approach might be to compress or reduce datasets, either by filtering techniques or 

efficient numerical representations, which is another attempt to reduce the data footprint during analysis 

(see next section). For data mining tasks, the dynamic selection of only parts of the dataset in a stream 

processing manner seems to be also and interesting attempt to reduce I/O efforts, but requires a detailed 

metadata description and data curation scheme. 
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6. Data Reduction 

The capability to efficiently process large amounts of data has always been, and will always be, a key 

computational component of any workflow associated with engineering and scientific discovery. In some 

instances, the processing requires working with data that has been generated from external sources, e.g., 

the processing of data associated with the training of NNs. In other instances, such as in computer 

simulations of plasmas, data generation and data processing are intertwined; the data associated with the 

initial state of the plasma is generated or captured from experiment, and the simulation consists of 

repeatedly transforming this data to obtain the data representations of the state of the plasma at later times. 

In either instance, computations with the data require moving portions of the data into and out of an 

arithmetic unit where the requisite arithmetic operations are performed. This arithmetic unit can either be 

a portion of the CPU or, if current trends continue, some form of an attached computational accelerator, 

such as a GPU. It is a fact that the efficiency, or lack thereof, of processing data is increasingly being 

dominated by the time and energy expenditure required to just move data to and from these arithmetic 

units, and much less upon the time and energy required by the arithmetic units to carry out arithmetical 

operations. This fact, coupled with the fact that the amount of data being processed is growing 

exponentially, implies that efficient implementation of any data analysis procedure, ML activity, or 

simulation for engineering or scientific prediction requires reducing the costs arising from data movement. 

This is a critical aspect of exploiting the peak computational efficiency of today's and future HPC systems. 

Present Status 

Data reduction has been, and continues to be, one of the most useful ways to reduce the cost of data 

movement. The idea is to identify and use a representation of the data that is more compact, requiring 

fewer bits to store the data while preserving the information content in the data that is necessary for the 

success of a data analysis procedure or scientific simulation. The cost of data movement is reduced, 

because, quite simply, one is moving less data. Tremendous improvements in efficiency have been 

obtained through the use of data reduction techniques (codecs) in audio and video transmission. The 

challenge is to develop data reduction techniques that can be exploited to achieve similar dramatic 

reductions in the costs associated with data movement in the scientific discovery and prediction 

workflows. 

The development of data reduction techniques is challenging because the reduced representation is 

problem dependent. Moreover, the use of an alternate representation of the data requires efficient 

procedures for encoding and decoding raw data; parameters associated with the data reduction process 

must be determined so that information loss is minimized. Also, there are significant challenges to 

developing adaptive compression techniques that are suitable for problems with dynamically changing 

data, such as data arising from real-time sensing, data associated with time dependent simulations, or 

iterative computational procedures.   

There are techniques that already exploit the benefits of data compression. Decompositions using 

predetermined modes, such as those associated with truncated Fourier or Wavelet transformations, can 

significantly reduce the data representation. Modal decompositions obtained with principal component 

analysis and based upon simulation or experimental data can provide even more efficient representations. 

Taking these ideas a step further, hierarchical construction of low rank approximations of matrix sub-

blocks has proven an effective technique for matrix compression or "sparsification." Any numerical 

discretization (h- or p-refinement) that adapts dynamically to the solution is another form of data reduction 

that focuses degrees of freedom where they provide the most benefit. For example, sparse grid techniques 
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where one maintains a prescribed level of accuracy in a discretization while reducing the necessary data 

to represent a solution.  

New lossy floating point compression algorithms like ZFP and SZ are being used to compress simulation 

data not only for I/O, but also for compressing the solution state in memory during the simulation. 

Theoretical results are being developed to quantify the associated errors and their effect on stability and 

convergence. Floating point number representations other than IEEE 754 types, which make better use of 

a fixed bit budget, are also being devised and explored in the context of simulation.  

Future Directions 

There remain many problems that need to be addressed and many opportunities to be exploited to further 

take advantage of the benefits of data reduction.  

Alternate floating point representations. With respect to data reduction that is implemented via alternate 

floating point representations, software tools and analytic results are needed that allow one to reliably 

assess, either before a computational process starts or as a computational process is being carried out, 

those portions of process that can tolerate errors introduced by reduced floating point precision. Hardware 

support for compressed or alternative floating point data representations, such as encoding and decoding 

in hardware are necessary. Additional efficiency could be obtained using specialized routines or hardware 

that carry out arithmetic operations on the compressed data directly, instead of decoding the data, 

performing arithmetic operations, and encoding the results. The benefits of data reduction will be made 

more widely accessible with the development of compiler support or programming languages that allow 

the declaration of compression and decompression at higher levels. 

Working with reduced data. Improving efficiency by working upon reduced data directly could also be 

obtained with the identification and construction of high level operators that work directly with a reduced 

representation. A specific example of this is the construction of approximations of nonlinear differential 

operators when they are to be directly applied to the reduced basis associated with principle orthogonal 

decompositions. One of the possible uses of ML techniques is to identify surrogate models of these 

operators based upon simulation data rather than to determine these operators using classical numerical 

techniques.   

Feature identification is becoming a key component for successful modeling using ML algorithms. There 

are, of course, techniques for determining features that are application agnostic, but it has been observed 

that significant improvements in the creation of features will be obtained by inclusion of domain 

knowledge as mentioned in Section 3. 

Theoretical analysis. Mathematical analysis that determines upper and lower bounds for the accuracy that 

is obtainable when using alternate data representations needs to be developed. This is particularly 

challenging because standard methods of analysis typically assume infinite precision, and the effects of 

reduced precision need to be explicitly taken into account. Also needed is a better theoretical 

characterization of the information content of data as it is used in a specific computational process. A 

promising approach may be to make use of classical information theory. For example, determining how 

best to use a specified number of bits to implement (near) optimal data reduction. Perhaps most important 

are theoretical results and algorithmic techniques that can be used to deduce the stability of complex 

computations with respect to the errors involved in using reduced data representations. 

7. New Algorithms 

Emerging computer systems are branching into two distinct directions, heterogeneous and distributed, and 

both of these require the development or redesign of algorithms to make the best use of their capabilities. 
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Furthermore, many issues that seemed settled, now warrant broad reconsideration due to the change in 

hardware. At the same time, scientific communities aim to solve more ambitious problems that were 

traditionally believed to be too difficult. E.g., many domain sciences aim to solve their problems with 

DNNs. This optimization was believed to be too high-dimensional and non-convex to be tractable. 

However, recent successes seem to suggest that there are numerical methods that can solve these problems. 

A robust algorithm is able to arrive at the correct answer, and having a slower robust algorithm is usually 

better than a faster non-robust algorithm. Cost can refer to the electricity consumed by a system over the 

course of running an algorithm or to the time it takes an algorithm to complete.   

New Hardware, New Algorithms 

In recent years, there have been several areas of algorithm development which were strongly influenced 

by evolving hardware, including communication avoiding algorithms, asynchronous algorithms, and 

algorithms for mixed or low precision. Communication avoiding algorithms mitigate the amount of data 

transferred between memory hierarchy levels, which is the bottleneck of simulations in many applications 

running on a heterogeneous computer system. In particular, they practice reduction of data volume, 

elimination of metadata generation, reduction of data exchange frequency, homogenization of data access, 

data access hiding, and localization of data transfer. These general techniques can be applied to a wide 

range of algorithms. For simple math operations like matrix multiplication, communication can be reduced 

by changing the order of equations. There are also algorithms to reduce the number of writes, realizing 

that writing to memory is more expensive than reading. This technique cannot be applied to cache-

oblivious algorithms but has been demonstrated for classical matrix multiplication. For more complex 

calculations, simple modifications to existing code may not be effective, and a more significant redesign 

of the algorithm is likely to be required. In some cases, such redesign has led to orders-of-magnitude 

improvement in computational speed. 

Asynchronous algorithms replace the synchronous collective communication in a multi-process numerical 

scheme with asynchronous communication, in which processes that send data do not wait for the other 

processes to receive. This has an obvious benefit to the overall computational speed, while these methods 

can experience difficulty in convergence compared to synchronous methods. Finally, the change in 

computer architecture has motivated a redesign of algorithms using mixed or low precision without 

sacrificing much accuracy. Hierarchical, iterative methods where high precision is only achieved near 

convergence, the application of lower precision preconditioners and adaptive domain decomposition 

methods where different schemes are applied in different problem domains may serve as examples of 

directions that warrant more investigation. These trends will place increased demands to reliability and 

reproducibility of the computational results produced by the next generation of algorithms. 

New Problems, New Algorithms 

Successes of DNNs over the past decade have resulted in applications to many different problems. 

However, this push for rapid advancement may have resulted in development by trial-and-error, rather 

than sound theoretical reasoning. In particular, stochastic gradient descent and its variants, which are the 

dominant optimization algorithm for DNNs, are not effectively utilized due to their sensitivity to 

hyperparameters. Fortunately, recent developments in the theoretical understanding of stochastic 

algorithms provide new insights that explain their behavior, and suggest improvements to existing 

algorithms. Since DNNs are used in a wide range of communities, theoretical studies will have far-

reaching implications. 

Challenges related to difficult optimization problems – such as DNN optimization, hyperparameter tuning, 

and clustering – are believed to stem from the sensitivity of the optimization algorithm to the changes in 
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its parameters. Recent work suggests that this problem can be addressed by adaptive sampling algorithms 

exploring the solution space using a probability distribution which changes in the course of the 

optimization. However, the performance of these algorithms is sensitive to the probability distribution 

update, so special care is needed when developing new methods. Nonetheless, the difficulties in 

development may be outweighed by ease of parallelization and by insights from probabilistic 

interpretation such as measures of robustness. 

8. Outlook 

One of the main conclusions of the present Long Program was that much can be gained by changing the 

scientific community’s mindset regarding Computational Science. 

Thinking differently 

An important theme in this context was the relationship between data, information, and knowledge. In 

particular, gathering more data is not an end in itself – the goal is to extract new knowledge. It is therefore 

important to ask the question: How much information is really contained in a given dataset, and what 

constitutes an adequate minimal representation of this data? This philosophy also applies to simulation 

data, of course, and one should actually be prepared to improve efficiency by only using the accuracy 

required for the problem at hand, e.g., by reducing the precision or by employing reduced models in the 

framework of a multi-fidelity approach. The basic idea of numerical analysis to control the error can thus 

be pushed towards larger – not smaller – errors, potentially relaxing the computational cost significantly. 

Another key theme was to make better use of existing infrastructures. Experimental data is often not 

curated, which prevents it from being accessed directly via modern data science methods, and real-world 

applications running on present supercomputers often only reach a few percent of the theoretical peak 

performance, pointing to unrealized potential. Finally, instead of maximizing the number of floating point 

operations per second for monolithic applications, one should keep in mind that the goal is to make 

scientific discoveries, and this goal may be reached most efficiently, e.g., via smart workflows combining 

simulation and AI/ML that help to bridge different physical models and spatio-temporal scales while at 

the same time including experimental or observational data. All of these points emphasize that out-of-the-

box thinking holds a great deal of promise - way beyond any brute-force approach along conventional 

paths. 

Projects and Initiatives 

During the present Long Program, several ideas for specific projects and initiatives emerged which 

exemplify this change of thinking. These include, but are not limited to: 

● Lossy compression of scientific data. Preliminary studies have demonstrated that theory-driven 

models can tolerate substantial lossy floating-point compression, not only of I/O and tabular data, 

but also of the solution state in memory. Theory has been produced that provides justification that 

inline compression of the solution state does not alter the algorithmic stability under common 

assumptions. Application of this idea to a broader class of problems is necessary, and more 

guidance is needed to determine how much compression is allowable. Work has already begun 

applying ZFP to data from the gyrokinetic code GENE, which is an interesting application because 

it is used to calculate chaotic turbulent plasma flows. In this context, it is important to determine 

how aggressively the compression can applied before significantly altering the statistics of the 

computed solution. 

● Scientific ML competition. An important strategic question that arose during the Long Program 

was how to motivate the ML community to work on Scientific ML problems. The observation was 
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made that other areas successfully drew attention to their problems by providing datasets and 

posing a competition.  Conveniently, in the US, OSTP’s Subcommittee on Machine Learning and 

Artificial Intelligence is currently collecting publicly available scientific datasets from NIST, 

DOD, DOE, IARPA, NSF, etc. that can currently leverage AI, ML, and large-scale data analysis 

capabilities. An effort should be made to work with this data to pose a Scientific ML Data 

Challenge, which will require defining meaningful metrics for each dataset besides standard ML 

metrics, including but not limited to preservation of physical properties, interpretability, and 

reproducibility. 

● Reproducibility and Workflow Mapping. Scientific advances can only be achieved if the 

methods used are transparent and the results are reproducible. To improve the scientific process, 

especially in data-driven and exploratory analysis, not only the data, but also the algorithms and 

software tools need to be published and made available to the research community – for the sake 

of reproducibility, but also to identify errors or bias in results. New statistical methods that can 

establish transparency in algorithms and data usage at various stages of the workflow pipeline are 

needed. To address various reproducibility requirements, data dredging must be identified at all 

stages of the workflow in an automatic manner. Reliable and representative datasets should be 

obtained by data cleansing techniques with stringent statistics rigor. The use of verification 

software and data analysis under human intervention, e.g., data scientists, requires a new robust 

software infrastructure that can integrate flexible programming models and analytics tools and 

need to be interoperable on different architectures (HPC, cloud). Engineering such a scalable 

workflow for scientific computing is both an algorithmic and software challenge. 

● Towards multi-fidelity Monte Carlo sampling in large-scale problems. The recent advances in 

multi-fidelity methods for uncertainty propagation, inference, and optimization show great 

potential for applying the aforementioned outer-loop scenarios in large-scale simulations. During 

this Long Program, a collaboration was started in which multi-fidelity sampling is applied to 

plasma microturbulence analysis. Important future research directions include the extension of the 

current framework, for example to an adaptive version in which the employed low-fidelity models 

are created dynamically using a quasi-optimal resource management, investigating higher order 

approaches, or to broaden the application domains. Moreover, although there is already a 

reasonable mathematical underpinning of the general Ansatz, there is need for more results, e.g., 

regarding adaptive model selection or assumptions for the applicability of the methodology. A 

clear interest in multi-fidelity methods is increasingly shown in other communities as well, e.g., 

from DoE labs or in the form of the Emukit toolkit from the UK Amazon machine learning lab. 

It will be interesting to see how these (and many other) ideas developed during the present Long Program 

will play out in the months and years ahead. 

 

Glossary 

AI  Artificial Intelligence 

BD  Big Data 

CMOS  Complementary Metal–Oxide–Semiconductor 

CPU  Central Processing Unit 

DNN  Deep Neural Network 
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DOD   U.S. Department of Defense 

DOE  U.S. Department of Energy 

FAIR  Findable, Accessible, Interoperable, Reusable 

FPGA  Field-Programmable Gate Array 

GPU  Graphics Processing Unit 

HPC  High Performance Computing 

IARPA Intelligence Advanced Research Projects Activity 

IEEE  Institute of Electrical and Electronics Engineers 

I/O  Input / Output 

ML  Machine Learning 

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor 

NN  Neural Network 

NIST  National Institute of Standards and Technology 

NSF  National Science Foundation 

OSTP  Office of Science and Technology Policy 

TFET  Tunnel field-effect transistor 

TL   Transfer Learning 

UQ  Uncertainty Quantification 


