New Evidence from NSF-funded ANDRILL Demonstrates Climate Warming Affects Antarctic Ice Sheet Stability

ANDRILL core

Peter West / NSF

3/18/2009

A five-nation scientific team has published new evidence that even a slight rise in atmospheric concentrations of carbon dioxide, one of the gases that drives global warming, affects the stability of the West Antarctic Ice Sheet (WAIS). The massive WAIS covers the continent on the Pacific side of the Transantarctic Mountains. Any substantial melting of the ice sheet would cause a rise in global sea levels.

The research, which was published in the March 19 issue of the journal Nature, is based on investigations by a 56-member team of scientists conducted on a 1,280-meter (4,100-foot)-long sedimentary rock core taken from beneath the sea floor under Antarctica's Ross Ice Shelf during the first project of the ANDRILL (ANtarctic geological DRILLing) research program - the McMurdo Ice Shelf (MIS) Project.

 The National Science Foundation (NSF), which manages the U.S. Antarctic Program (USAP), provided about $20 million in support of the ANDRILL program. The other ANDRILL national partners contributed an additional $10 million in science and logistics support.

 "The sedimentary record from the ANDRILL project provides scientists with an important analogue that can be used to help predict how ice shelves and the massive WAIS will respond to future global warming over the next few centuries," said Ross Powell, a professor of geology at Northern Illinois University.

 "The sedimentary record indicates that under global warming conditions that were similar to those projected to occur over the next century, protective ice shelves could shrink or even disappear and the WAIS would become vulnerable to melting," Powell said. "If the current warm period persists, the ice sheet could diminish substantially or even disappear over time. This would result in a potentially significant rise in sea levels."

ANDRILL--which involves scientists from the United States, New Zealand, Italy and Germany--refines previous findings about the relationship between atmospheric carbon-dioxide concentration, atmospheric and oceanic temperatures, sea-level rise and natural cycles in Earth's orbit around the Sun, through the study of sediment and rock cores that are a geological archive of past climate.

The dynamics of ice sheets, including WAIS, are not well understood, and improving scientists' comprehension of the mechanisms that control the growth, melting and movements of ice sheets was one of NSF's research priorities during the International Polar Year (IPY).

The IPY field campaign, which officially ended March 2009, has been an intense scientific campaign to explore new frontiers in polar science, improve our understanding of the critical role of the polar regions in global processes, and educate students, teachers, and the public about the polar regions and their importance to the global system. NSF was the lead agency for U.S. IPY efforts.

The cores retrieved by ANDRILL researchers have allowed them to peer back in time to the Pliocene era, roughly 2 million to 5 million years ago. During that era, the Antarctic was in a natural climate state that was warmer than today and atmospheric carbon dioxide levels were higher.

Click here to read the rest of the story.