text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
Search Multimedia
Image
Video
Audio
More
Multimedia in the News
NSF Executive Staff
News Archive
 

Email this pagePrint this page
Students Create 3-D Objects in the Classroom (Image 1)


A student creates a 3-D object with a classroom 3-D printer

A middle-school student at the Next Generation School in Champaign, Ill., creates a 3-D object with a classroom 3-D printer. Students in grades K-12 can "print" 3-D objects from computer-generated sources right in the classroom! The rapid prototyping or 3-D lithography process. The process is based on a research project that was headed by Nicholas Fang, an assistant professor in the Mechanical Engineering Lab at the University of Illinois at Urbana-Champaign, and developed at the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems (NanoCEMMS) at the university. NanoCemms is a National Science Foundation (NSF) Nanoscale Science and Engineering Center.

The process uses UV sensitive monomer to do a form of 3-D printing called microstereo lithography. The students use a video projector with a UV output to create incredibly thin polymer layers (on the order of 400 nanometers) and build objects layer by layer. The activity demonstrates the basic challenges of nanoscale engineering and mechanical.

The 3-D printing process has already been used by hundreds of students in Illinois at all grade levels to turn mathematical models into objects that they can touch and feel.

To learn more about this technology, see the Illinois news story "Seeing" Means Understanding.

Nano-CEMMS provides a wide range of human resource development activities targeted toward increasing both the diversity of students involved with the center and educational opportunities at the K-12 and undergraduate levels, as well as providing graduate students with teaching experience in an emerging field. To learn more about the center, visit the Nano-CEMMS website Here. [Research supported by NSF grant CMMI 07-49028, awarded to John Rogers.] (Date of Image: 2008-2010) [See related image Here.]

Credit: Joe Muskin, University of Illinois

General Restrictions:
Images and other media in the National Science Foundation Multimedia Gallery are available for use in print and electronic material by NSF employees, members of the media, university staff, teachers and the general public. All media in the gallery are intended for personal, educational and nonprofit/non-commercial use only.

Images credited to the National Science Foundation, a federal agency, are in the public domain. The images were created by employees of the United States Government as part of their official duties or prepared by contractors as "works for hire" for NSF. You may freely use NSF-credited images and, at your discretion, credit NSF with a "Courtesy: National Science Foundation" notation. Additional information about general usage can be found in Conditions.

Also Available:
Download the high-resolution JPG version of the image. (4.7 MB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.

 



Email this pagePrint this page
Back to Top of page