text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
Materials Research (DMR)
design element
DMR Home
About DMR
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Proposals
Workshops and Reports
Research and Education Highlights
See Additional DMR Resources
View DMR Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional DMR Resources
Lightsource
DMR Proposal Submission Deadline
Broadening Participation
Professional Societies
Materials Websites
Links for Kids
Interagency Coordinating Committee on Ceramics Research and Development (ICCCRD)
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page
All Images


Press Release 11-058
Size Matters: Smaller Particles Could Make Solar Panels More Efficient

Researchers study quantum dots to increase the amount of electricity solar panels produce

Back to article | Note about images

Image of multiple-exciton generation, which suggests one exciton can produce multiple excitons.

Illustration of multiple-exciton generation (MEG), a theory that suggests it is possible for an electron that has absorbed light energy, called an exciton, to transfer that energy to more than one electron, resulting in more electricity from the same amount of absorbed light. The left side shows an electron promoted to a high energy state (blue) plus the "hole" vacated by the electron (red). The right side shows the original exciton (now dark green/red) and a new exciton (light green/orange) after MEG. The top image shows a conceptualized version of the idea, while the bottom shows an actual exciton and bi-exciton using the same color scheme.

Credit: Mark T. Lusk, Department of Physics, Colorado School of Mines


Download the high-resolution JPG version of the image. (7.5 MB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.



Email this pagePrint this page
Back to Top of page