text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page
All Images


Press Release 11-123
Stretching Old Material Yields New Results for Energy- and Environment-related Devices

Stretching could improve efficiency of material used in batteries, fuel cells and water purification

Back to article | Note about images

Illustration of channels in a polymer electrolyte membrane material.

This image illustrates how the channels in a polymer electrolyte membrane material change when you stretch it. On the left is an unstretched sample of the material. The middle sample has been stretched at a ratio of 2:1, while the sample on the right, which shows the most channel alignment, has been stretched at a ratio of 4:1.

Credit: Dr. Jing Li and Prof. Louis Madsen of Virginia Tech


Download the high-resolution JPG version of the image. (22 KB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.

Image showing water molecules inside blue ionic nanochannels.

This image shows water molecules (red and white) inside ionic nanochannels (blue).

Credit: Dr. Jing Li and Prof. Louis Madsen of Virginia Tech


Download the high-resolution JPG version of the image. (113 KB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.



Email this pagePrint this page
Back to Top of page