text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page
All Images


New NSF Engineering Research Center to Create Chip-scale Electromagnetic Devices Enabled by Nanosystem Breakthrough

Back to article | Note about images

Images of a magnetic field turned on and off.

TANMS researchers have used an electric field to turn a magnetic field on (left) and off (right). They measured this effect in a ferromagnetic thin film on top of a piezoelectric substrate, using a magnetic force microscope. At left, the dark lines represent magnetic north poles emanating from the ferromagnetic thin film, and the light lines represent magnetic south poles. At right, an electric field is applied to the piezoelectric substrate, and the lines vanish, meaning that the magnetic field is no longer present. The researchers will expand on this ability to control magnetic fields in nanostructured ferromagnetic elements in the work of the TANMS Nanosystems Engineering Research Center. TANMS seeks to integrate newly discovered large-effect multiferroic materials into electromagnetic devices, thereby enabling chip-scale generation of magnetic fields through the simple application of a voltage. Their research could lead to transformations in memory systems, antenna systems, and nanomotor systems.

Credit: Ray C. J. Hsu, Mechanical and Aerospace Engineering, University of California-Los Angeles


Download the high-resolution TIF version of the image. (307 KB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.

Image of a Nickel ring on a piezoelectric substrate.

This Scanning Electron Micrograph (SEM) shows a 500nm Nickel ring on a piezoelectric substrate. Such ferromagnetic rings may be used in the fabrication of nanoscale motors at the NSF Nanosystems Engineering Research Center (NERC) for Translational Applications of Nanoscale Multiferroic Systems (TANMS).

Credit: Joshua Leon Hockel, Mechanical and Aerospace Engineering Department, University of California Los Angeles


Download the high-resolution TIF version of the image. (822 KB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.



Email this pagePrint this page
Back to Top of page