text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 05-061
Microbial Genome Helps Blast Devastating Rice Disease

Genetic sequence of rice blast fungus provides critical piece of disease puzzle

Rice plant

Researchers have more information to aid rice production.
Credit and Larger Version

April 21, 2005

Researchers have sequenced the genome of rice blast fungus, providing them with key information to tackle the devastating rice blast disease. The genetic blueprint of more than 11,000 genes of Magnaporthe grisea--the culprit pathogen--will allow researchers to study host-pathogen interactions of this disease at the molecular level, leading to new ways to defeat the fungus.

Rice blast disease currently devastates rice yields, destroying enough grain to feed 60 million people. For decades, growers around the world have worked to control the disease with costly fungicides. To date, the fungus--through its ability to mutate and better attack plants--has beaten both chemical treatments and genetic resistance developed by plant breeders in some types of rice. A strategy to eliminate the disease would increase world rice production by more than 10 percent.

North Carolina State University researcher Ralph Dean and his colleagues published this sequencing work in the April 21 issue of Nature. The research marks the completion of the first draft sequence of a plant pathogen.

By combining the genetic information of the pathogen with the previously published rice genome, scientists will have new insight into the molecular mechanisms by which the fungus infects plants and adapts to thwart the host's defenses. Additionally, the knowledge gained from studying rice blast disease will benefit other investigations focused on the molecular mechanisms of plant-microbe interactions. For example, it is now known that this fungus uses a new class of receptor to distinguish rice from all other plants.

As Dean said, "Decoding the rice blast genome is a great achievement which couldn't have come at a better time. Rice is the primary source of nutrition for much of the world, particularly Southeast Asia. Following the devastating tsunami, every effort will be needed to improve rice production, and in the long-term, having the genome sequences of both rice and rice blast will greatly aid in this effort."

Dean's work was supported in part by the National Science Foundation's (NSF) Microbial Genome Sequencing Program. A joint effort between NSF and the United States Department of Agriculture (USDA), the program funds genome sequencing projects of importance to the nation's food and fiber supply.

-NSF-

Media Contacts
Richard (Randy) Vines, NSF, (703) 292-7963, rvines@nsf.gov

Principal Investigators
Ralph Dean, North Carolina State University, (919) 513-0020, ralph_dean@ncsu.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2015, its budget is $7.3 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 48,000 competitive proposals for funding, and makes about 11,000 new funding awards. NSF also awards about $626 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Rice blast on rice
Lesions caused by the rice blast fungus on rice plant leaves.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page