text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Engineering (ENG)
Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
design element
About CBET
Funding Opportunities
Career Opportunities
View CBET Staff
ENG Organizations
Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
Civil, Mechanical and Manufacturing Innovation (CMMI)
Electrical, Communications and Cyber Systems (ECCS)
Engineering Education and Centers (EEC)
Emerging Frontiers and Multidisciplinary Activities (EFMA)
Industrial Innovation and Partnerships (IIP)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Merit Review
NSF Outreach
Policy Office
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Press Release 05-105
The Shifty Nature of Grains

Qualities of granular materials provide insight into both nature and industry

A Duke University researcher studies the properties of granular materials.

See video.
Credit and Larger Version

June 22, 2005

In separate papers appearing in this week's Nature, researchers announce findings regarding the little-understood world of granular materials, systems of particles that can dictate the flow of avalanches, the quality of concrete and even the mixing of pharmaceuticals.

In both studies, the researchers developed new analytical tools that combine laboratory simulators with advanced computer simulations and mathematics, bringing additional quantitative methods to a field that relies mostly upon qualitative observations. 

Duke University physics and engineering professor Robert Behringer and his graduate student, Trushant Majmudar, used a novel system that includes a bed of thousands of light-bending plastic cylinders to trace the flow of stress, particle by particle, in a 2-dimensional granular set up. The researchers found that stresses applied to one dimension across the bed transferred along jagged pathways from one particle to the next when the other dimension was free from strain. However, when the system was compressed equally on both sides, the pathways, or "force chains," were much shorter. 

The findings could prove important for understanding natural hazards such as the recent slope failures at La Conchita and Laguna Beach in California. Strongly shear states with long force chains occur just before the granular material fails, similar to the collapsing sandy cliffs.

The second report comes from the Chicago Materials Research Center at the University of Chicago, one of nearly 30 NSF-supported Materials Research Science and Engineering Center. Physicists Heinrich Jaeger and Sidney Nagel worked with graduate student Eric Corwin to develop a different testing system, in this case comprised of a cylinder filled with up to 100,000 glass beads compressed over hour-long periods by a rotating piston. Their goal was to study shear forces in granular materials.

The Chicago researchers were able to quantify a characteristic change in the way stresses propagate through the materials when the grains shift from a jammed state to a flowing one. The researchers suspect the underlying mechanism, whereby grains acquire an "effective temperature" in their flowing state, has wide-reaching implications for better understanding materials that are jammed at the atomic level, such as glass.

Glass behaves like a solid but can flow like a liquid, particularly at higher temperatures. If the granular studies hold true, this project may have resolved decades-old questions regarding the transition of solids into the more fluid glass-like state.


The Duke University press release can be found at: http://www.dukenews.duke.edu/2005/06/stressmeasure
The University of Chicago press release can be found at: http://www-news.uchicago.edu/releases/05/050622.jamming.shtml

The Duke University research was funded by NSF Award #0137119:
Force Propagation and Friction in Granular Materials


The University of Chicago research was funded under NSF Awards #0213745 and #0405619:
Materials Research Science and Engineering Center

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0213745 Experimental Investigations of Sheared Granular Materials

Media Contacts
Joshua A. Chamot, NSF, (703) 292-8070, jchamot@nsf.gov
Monte Basgall, Duke University, (919) 681-8057, monte.basgall@duke.edu
Steve Koppes, University of Chicago, (773) 702-8366, skoppes@uchicago.edu

Program Contacts
Thomas P. Rieker, NSF, (703) 292-4914, trieker@nsf.gov
Wendy Fuller-Mora, NSF, (703) 292-4931, wfullerm@nsf.gov
Triantafillos J. Mountziaris, NSF, (703) 292-8371, tmountzi@nsf.gov

Bob Behringer, Duke University, (919) 660-2550, bob@phy.duke.edu
Sidney R. Nagel, University of Chicago, (773) 702-7190, s-nagel@uchicago.edu
Heinrich M. Jaeger, University of Chicago, (773) 702-6074, h-jaeger@uchicago.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2016, its budget is $7.5 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives more than 48,000 competitive proposals for funding and makes about 12,000 new funding awards. NSF also awards about $626 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/


Researchers review data from study of the behavior of granular materials.
Researchers review data from study of the behavior of granular materials.
Credit and Larger Version

Engineer and physicist Bob Behringer and graduate student Trushant Majmudar
Engineer and physicist Bob Behringer (right) and graduate student Trushant Majmudar ...
Credit and Larger Version

Email this pagePrint this page
Back to Top of page