text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Education & Human Resources (EHR)
Graduate Education (DGE)
design element
DGE Home
About DGE
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Graduate Education Challenge 2013 Entry Database
View DGE Staff
EHR Organizations
Graduate Education (DGE)
Research on Learning in Formal and Informal Settings (DRL)
Undergraduate Education (DUE)
Human Resource Development (HRD)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page


Press Release 05-109
Bacteria Take the Path of Least Resistance

Findings may lead to new nano-devices and understanding of infection

<i>Escherichia coli</i> cells

Escherichia coli cells use long, thin structures called flagella to propel themselves.
Credit and Larger Version

June 30, 2005

Researchers have reported new information about how certain bacteria propel themselves from one place to another. Insight into bacterial micro-movement will benefit scientists and engineers developing nano-scale mechanical devices that may one day push fluids and transport molecules without the aid of pumps or electrical charges.

The findings, published in the June 30 issue of the journal, Nature, may also help elucidate how pathogens traverse the human body when causing disease.

Using a novel system of microscopic channels, Harvard University researchers separated individual Escherichia coli cells from their typical "swarm" and videotaped them as they swam over different types of surfaces. A laboratory workhorse and common gastrointestinal bacterium, E. coli, preferred to swim near a gel-like porous surface with characteristics similar to biological tissues rather than near a glassy, solid one. In fact, they swam next to the porous surface for much longer periods of time.

First author Willow DiLuzio said, "Now that we've established the bacterium's preference to swim toward a specific kind of surface, we hope to harness this basic information and focus on how to use it to direct movement in microfluidic, cell-based bioassays and sensors."

The team developed a new technique to fabricate microchannels only 10 microns wide, or one-tenth the width of an average human hair. The walls of the channels were either a porous agar or a solid, commercially available silicone-rubber compound.

E. coli use long, whip-like structures called flagella to propel themselves. Motors in the cell's wall spin the flagella into bundles that rotate counter-clockwise, creating a twist that causes the bacterium to rotate clockwise, or towards the right when viewed from above.

If cells were introduced to each end of the channel containing agar on the bottom, the cells preferentially swam on the right-hand side of the microchannel resulting in an ordered movement that resembled cars driving on a two-way street. And the microbes swimming closer to the agar surface moved faster than those swimming near the solid surface.

The authors propose that the bacteria closer to the porous surface experience less resistance and thus move faster.

"Because of E. coli's size, relative to the spacing of surrounding water molecules, it's analogous to a human trying to move through thick honey," said DiLuzio. "Now, an entirely new set of hydrodynamic properties have to be considered in order to understand their movement as well as replicate it in man-made nano-devices."

The surfaces of cells in the human body are often coated with a layer similar to agar. Future research into microbial movement will also be helpful in understanding how human infectious diseases develop and how infection might be halted in the body.

DiLuzio is supported by the National Science Foundation's Education Human Resources directorate through an award made to Harvard's Integrated Training Program in Biomechanics.

-NSF-

Media Contacts
Richard (Randy) Vines, NSF, (703) 292-7963, rvines@nsf.gov

Principal Investigators
George Whitesides, Harvard University, (617) 495-9430, gwhitesides@gmwgroup.harvard.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2015, its budget is $7.3 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 48,000 competitive proposals for funding, and makes about 11,000 new funding awards. NSF also awards about $626 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

<em>Escherichia coli</em>
View Video
Real-time video of Escherichia coli cells swimming in a 10-micron wide microchannel.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page