text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Engineering (ENG)
Engineering Education and Centers (EEC)
design element
EEC Home
About EEC
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
COV 2007 Site
ERC Site
Program Evaluations
See Additional EEC Resources
View EEC Staff
ENG Organizations
Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
Civil, Mechanical and Manufacturing Innovation (CMMI)
Electrical, Communications and Cyber Systems (ECCS)
Engineering Education and Centers (EEC)
Emerging Frontiers in Research and Innovation (EFRI)
Industrial Innovation and Partnerships (IIP)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional EEC Resources
ERC Website: Description of each ERC and summaries of their achievements.
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page


Press Release 05-216
Modified Microscope Proves Critical to Uncovering Cell-growth Secret

Tiny cantilevers track movements of cell scaffolding

An immune cell known as a macrophage pursues bacteria.

An immune cell known as a macrophage pursues bacteria.
Credit and Larger Version

December 27, 2005

Researchers using a customized atomic force microscope (AFM) have discovered new evidence for how the fibrous scaffolding within our cells, which is made of the protein actin, responds to obstacles in its environment.

The discovery demonstrates a technique for tracking a cell's growth history, and if it proves valid outside of the laboratory, researchers may one day look for actin-growth clues while tracking the pathways of spreading cancers, immune cells, and other free-moving cells that crawl throughout the body.

National Science Foundation CAREER awardee Daniel Fletcher of the University of California at Berkeley, lead authors Sapun Parekh and Ovijit Chaudhuri, also of Berkeley, and Julie Theriot of Stanford University published their findings in the Dec. 2005 issue of Nature Cell Biology.

"How do cells push in a particular direction when they confront a barrier?  That was the initial question in this research," says Fletcher.

When faced with a barrier, the researchers suspect the elongating matrix of filaments in a growing actin network adds more branches to counter the resistance. When the barrier is removed, they believe, the added filaments remain and the network grows at a new, faster rate.

Scientists have known that actin networks, unlike many other cell components, alter their growth in response to forces, not just chemical signals.  The new findings help clarify that response and provide new clues for how our cells stretch, change shape and move around obstacles.

Among other responsibilities, actin provides the structural support for cells and the growth force necessary for certain cellular activities.

"The front of a cell extends forward during crawling, and actin and its associated proteins are necessary for powering that forward motion," says Fletcher. "Other mechanical processes in cells, such as the 'Pac-Man'-like action of an immune cell eating a bacterium, also involve forces generated by growth of actin networks."

The networks are collections of proteins, so they are more complicated and more difficult to study than many other cellular components involved with cell motion and force. To track the growth rate and force generated by actin, the bioengineers modified an atomic force microscope (AFM).

In most research, the business end of an AFM is a miniscule, extremely sharp tip that is attached to a thin silicon-nitride cantilever. Because the tip is so slight, even features as tiny as individual atoms can cause the cantilever to deflect as it passes along, or slightly above, a surface. A laser bounces off the cantilever and into a detector, registering the tiny deflections and providing signals a computer translates into an image.

For this study, the researchers created a specialized AFM that uses two cantilevers and two lasers. Instead of scanning a surface, the cantilevers served as tiny springboards, one to bend as actin grew beneath it and the other to stay as a reference point close to the floor of the sample chamber. Using the two-cantilever system, the researchers pushed longer on the filaments than in any earlier study, and with more force -- in some cases to the point where the filaments stalled and could grow no further.

In multiple experiments, the cantilevers applied an initial force to a slurry of growing actin filaments, then applied a larger force for as long as 30 minutes. They then returned to the original load, at every stage tracking how fast the network grew.

Each time, when the cantilever returned to its original load, the growth velocity of the actin was faster. When the fibers endured multiple load cycles, they grew at a rate that was dependent upon all of the cycles.

"We've found that the growth of actin is dependent on its loading history -- not just on the load it feels at one moment, as we previously thought," says Fletcher. "This means the structure of a cell has some 'memory' of its physical interactions."

The researchers suspect the effect may relate to filament density, and the growth rate may be a function of the network architecture, itself dependent upon the entire load history.

"For a given load, proteins assume a certain network architecture," says Fletcher. "This architecture then remodels under a new load. So, if you go back to the original load, the architecture is still tuned for a higher load, resulting in explosive growth."

These are fundamental research findings, adds Fletcher, but in the long term they may help scientists and engineers understand cell crawling, potentially aiding future treatments that help white blood cells work better or stop tumor cells from moving to other parts of the body.

-NSF-

Media Contacts
Joshua A. Chamot, NSF, (703) 292-7730, jchamot@nsf.gov
Sarah Yang, University of California, Berkeley, (510) 643-7741, scyang@berkeley.edu

Program Contacts
Semahat S. Demir, NSF, (703) 292-7950, sdemir@nsf.gov

Principal Investigators
Daniel A. Fletcher, University of California, Berkeley, (510) 643-5624, fletch@berkeley.edu

Related Websites
The Fletcher laboratory website: http://fletchlab.berkeley.edu/
Actin website from the Protein Data Bank: http://www.rcsb.org/pdb/molecules/pdb19_1.html

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

The bright areas on the top edge of this fish cell depict growing actin networks.
The bright areas on the top edge of this fish cell depict growing actin networks.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page