text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
Physics (PHY)
design element
PHY Home
About PHY
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Facilities and Centers
PHY Program Director Jobs
See Additional PHY Resources
View PHY Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional PHY Resources
PHY: Investigator-Initiated Research Projects
Physics in the Mathematical and Physical Sciences
Nuclear Science Advisory Committee (NSAC)
High Energy Physics Advisory Panel (HEPAP)
DCL: Announcement of Intent to use an Asynchronous Review Mechanism for Proposals
DCL: Int'l Activities within PHY-Potential Co-Review
PHY COV Report 2012
Response to the PHY COV Report
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page


Press Release 06-052
First Result from New Experiment Confirms Neutrino Oscillation

Studies may aid understanding of all matter

The NuMI beam line is the business end of Fermilab's neutrino "gun."

The NuMI beam line is the business end of Fermilab's neutrino "gun."
Credit and Larger Version

March 30, 2006

By sending a high-intensity beam of subatomic particles known as neutrinos from a laboratory in Batavia, Ill., to a particle detector located deep in a mine in Soudan, Minn., scientists have confirmed the neutrinos really do "oscillate," changing from one kind to another as they fly along.

The payoff could be a deeper understanding of the ghostly neutrino particles, which can traverse the entire Earth without interacting with matter. Ultimately, in fact, these elusive particles may help us understand the origins of the neutrons, protons and electrons that make up all the matter in the world around us.

Such oscillations have been observed in earlier experiments. But new experiments from the Main Injector Neutrino Oscillation Search (MINOS) based at the Fermi National Accelerator Laboratory will eventually examine the effect in much greater detail, and under controlled conditions.

"Using a man-made beam of neutrinos, MINOS is a great tool to study the properties of neutrinos in a laboratory-controlled environment," said Stanford University professor Stan Wojcicki, spokesperson for the experiment.

Their first result corroborates earlier observations of muon neutrino disappearance, made by the Japanese Super-Kamiokande and K2K experiments.

"Over the next few years, we will collect about 15 times more data, yielding more results with higher precision, paving the way to better understanding this phenomenon," Wojcicki said.

The U.S. Department of Energy funds most of MINOS through its support for Fermilab. The National Science Foundation and the United Kingdom's Particle Physics and Astronomy Research Council provide additional funding.

For more details, see the Fermilab news release.

-NSF-

MINOS Participating Institutions

Brazil:
University of Campinas
University of Sao Paulo

France:
College de France

Greece :
University of Athens

Russia:
ITEP-Moscow
Lebedev Physical Institute
IHEP-Protvino

United Kingdom:
University of Cambridge
University College London, London
University of Oxford
Rutherford Appleton Laboratory
University of Sussex

United States:
Argonne National Laboratory
Benedictine University
Brookhaven National Laboratory
California Institute of Technology
Fermi National Accelerator Laboratory
Harvard University
Illinois Institute of Technology
Indiana University
Livermore National Laboratory
University of Minnesota, Minneapolis
University of Minnesota, Duluth
University of Pittsburgh
Soudan Underground Laboratory
University of South Carolina
Stanford University
Texas A&M University
University of Texas at Austin
Tufts University
Western Washington University
College Of William & Mary
University of Wisconsin-Madison

Media Contacts
M. Mitchell Waldrop, NSF, (703) 292-7752, mwaldrop@nsf.gov
Kurt Riesselmann, Fermilab, (630) 840-3351, kurtr@fnal.gov

Related Websites
The MINOS Web site: http://www-numi.fnal.gov/
The Fermilab news release: http://www.fnal.gov/pub/presspass/press_releases/minos_3-30-06.html
Links to the institutions participating in MINOS: http://www-numi.fnal.gov/collab/institut.html

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

The MINOS neutrinos travel 450 miles straight through the earth from Ill. to Minn.
The MINOS neutrinos travel 450 miles straight through the earth from Ill. to Minn.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page