text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 06-062
Higher Carbon Dioxide, Lack of Nitrogen Limit Plant Growth

Stunted plants may not soak up excess carbon dioxide from the atmosphere

Scientists study purple lupines and other flowers and grasses in an experimental plot.

Scientists study purple lupines and other flowers and grasses in an experimental plot.
Credit and Larger Version

April 12, 2006

Earth's plant life will not be able to "store" excess carbon from rising atmospheric carbon dioxide levels as well as scientists once thought because plants likely cannot get enough nutrients, such as nitrogen, when there are higher levels of carbon dioxide, according to scientists publishing in this week's issue of the journal Nature.

That, in turn, is likely to dampen the ability of plants to offset increases in atmospheric carbon dioxide.

"We found that atmospheric carbon dioxide levels may rise even faster than anticipated, because ecosystems likely will not store as much carbon as had been predicted," said Peter Reich of the University of Minnesota, lead author of the study, which was conducted at the National Science Foundation (NSF)'s Cedar Creek Long-Term Ecological Research (LTER) site in Minn.

"As a result, soils will be unable to sustain plant growth over time [as atmospheric carbon dioxide continues to increase]," said plant ecologist David Ellsworth of the University of Michigan.

Estimating the role of terrestrial ecosystems as current and future sinks--or storage places--for excess carbon dioxide hinges on an ability to understand the complex interaction between atmospheric carbon dioxide and nitrogen in soils, the scientists believe.

The six-year study, the longest of its kind, sheds light on the relationship between carbon dioxide emissions and plant productivity. In the experiment, scientists grew 16 different grassland plants in 296 field plots. The plots were exposed to both ambient and elevated carbon dioxide levels, and varying levels of nitrogen.

The study was designed to document plants' ability to grow and flourish in nitrogen-depleted soil, which, scientists believe, will become more common as atmospheric carbon dioxide levels rise. Said Henry Gholz, director of NSF's LTER program, "The possibility that nitrogen availability will limit the stimulating effect on plant productivity expected as a result of higher atmospheric carbon dioxide concentrations has important consequences. Reich et al. provide convincing results from long-term studies of Midwestern prairie species under controlled experimental conditions that this will be the case under low-nitrogen conditions. Since the results are consistent with those from other studies of trees and agricultural crops, this suggests that nitrogen limitations in the future may be common in much of the world, despite widespread nitrogen pollution."

The Minn. study, with its range of species, provides a broad test of carbon dioxide and nitrogen interactions, said Reich. Previous studies have been done with a single or a few plant species.

The Cedar Creek LTER is one of 26 such LTER sites supported by NSF.

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov

Related Websites
Cedar Creek LTER Site: http://www.cedarcreek.umn.edu
LTER Network: http://www.lternet.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Using field plots, scientists test ecosystem responses to increased carbon dioxide levels.
Using field plots, scientists test ecosystem responses to increased carbon dioxide levels.
Credit and Larger Version

A bench allows scientists to take samples from the center of an experimental plot.
A bench allows scientists to take samples from the center of an experimental plot.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page