text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
Mathematical & Physical Sciences (MPS)
design element
MPS Home
About MPS
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
2013-2014 Distinguished Lecture Series
View MPS Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page


Press Release 06-064
Nanogenerators May Spark Miniature Machines

Devices convert simple motion into electricity

Georgia Tech Professor Zhong Lin Wang holds a sample nanowire array.

Georgia Tech Professor Zhong Lin Wang holds a sample nanowire array.
Credit and Larger Version

April 13, 2006

Researchers at the Georgia Institute of Technology have crafted tiny nanowires that generate electricity when they vibrate. Just like the quartz crystal in a watch, the zinc-oxide nanowires are piezoelectric, which means bending causes them to produce an electrical charge.

Only 20-40 billionths of a meter in diameter, each fiber partners with millions of others to form a nanogenerator capable of producing significant amounts of energy from the slightest activity. According to the researchers, motions from body movement, the stretching of muscles and even the flow of liquids should be able to generate electric charges in the wires--perfect for implantable medical devices, "smart" apparel and a variety of other applications.

Supported by the National Science Foundation Division of Materials Research Metals program, NASA and DARPA, physicist Zhong Lin "ZL" Wang and graduate student Jinhui Song report their findings in the Apr. 14, 2006, issue of the journal Science.

Additional information is available in the Georgia Tech press release linked below and at www.EurekAlert.org.

-NSF-

Media Contacts
Joshua A. Chamot, NSF, (703) 292-7730, jchamot@nsf.gov
John Toon, Georgia Institute of Technology, (404) 894-6986, jtoon@gatech.edu

Program Contacts
Harsh Deep Chopra, NSF, (703) 292-4543, hchopra@nsf.gov

Principal Investigators
Zhong Lin Wang, Georgia Institute of Technology, (404) 894-8008, zhong.wang@mse.gatech.edu

Related Websites
Georgia Tech press release: http://www.gatech.edu/news-room/release.php?id=932
Zhong Lin Wang laboratory homepage: http://www.nanoscience.gatech.edu/zlwang/index.html

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Zhong Lin Wang leads a nanoscience and nanotechnology research group at Georgia Tech.
Zhong Lin Wang leads a nanoscience and nanotechnology research group at Georgia Tech.
Credit and Larger Version

Zinc oxide nanowires produce current when bent.
Zinc oxide nanowires produce current when bent.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page