Email Print Share

News Release 06-125

Genome Info from "Plant Destroyers" Could Save Trees, Beans and Chocolate

Rapidly evolving genes encode substances that may debilitate plants

Scientists sequenced two Phytophthora genomes, a group of costly plant pathogens.

Scientists sequenced two Phytophthora genomes, a group of costly plant pathogens.


August 31, 2006

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

An international team of scientists has published the first two genome sequences from a destructive group of plant pathogens called Phytophthora--a name that literally means "plant destroyer." The more than 80 species of fungus-like Phytophthora (pronounced "fy-TOFF-thor-uh") attack a broad range of plants and together cost the agriculture, forestry and nursery industries hundreds of billions of dollars each year.

Even though Phytophthora are similar to fungi, most fungicides are ineffective at controlling them. The information gained from studying the genomic sequences of P. ramorum and P. sojae will help scientists devise strategies to combat not only these two species, but also other disease-causing Phytophthora.

The study appears in the Sept. 1 issue of the journal Science.

Phytophthora sojae, an endemic pathogen of soybeans, is responsible for $1 billion to $2 billion in losses worldwide each year. Phytophthora ramorum is associated with sudden oak death, a disease that has devastated the nursery industry and oak ecosystems in California, Oregon and Washington. More than 1 million native oak and tanoak trees have been lost to the disease.

In addition to soybean and oak, Phytophthora species cause disease in avocado, coconut, papaya, pineapple, potato, strawberry and watermelon, to name a few. The pathogen also destroys an estimated 450,000 tons of cocoa beans with a resulting $400 million loss in chocolate production each year.

The researchers found the pathogens have nearly twice as many genes as other fungal pathogens, and that more than 40 percent of the genes in each of the two species are undergoing rapid change. Many of the rapidly evolving genes encode toxins and other proteins that may debilitate plants.

"We speculate that the rapidly changing genes are being driven to evolve by pressure from the defense systems of the pathogens' host plants," said Virginia Bioinformatics Institute's Brett Tyler, the project's principal investigator.

"The Phytophthoras, in addition to their great economic importance, are fascinating organisms with very distinct and interesting biology," said Maryanna Henkart, NSF's division director for molecular and cellular biosciences, which helped fund the work. "These new genome sequences will contribute to our basic understanding of normal plant-microbe relationships as well as their roles in disease," she said.

The project was funded by the Microbial Genome Sequencing Program--a joint program between USDA's Cooperative State Research, Education and Extension Service and NSF--and also by the Department of Energy's Joint Genome Institute.

-NSF-

Media Contacts
Richard (Randy) Vines, NSF, (703) 292-7963, email: rvines@nsf.gov
Scott Elliot, CSREES - USDA, (202) 720-7185, email: selliott@csrees.usda.gov
Sean Adams, ARS - USDA, (301) 504-1617, email: sean.adams@ars.usda.gov
David Gilbert, DOE JGI, (925) 296-5643, email: DEGilbert@lbl.gov

Program Contacts
Maryanna P. Henkart, NSF, (703) 292-8440, email: mhenkart@nsf.gov

Principal Investigators
Brett Tyler, Virginia Bioinformatics Institute - Virginia Tech, (540) 231-7318, email: bmtyler@vt.edu

The U.S. National Science Foundation propels the nation forward by advancing fundamental research in all fields of science and engineering. NSF supports research and people by providing facilities, instruments and funding to support their ingenuity and sustain the U.S. as a global leader in research and innovation. With a fiscal year 2023 budget of $9.5 billion, NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and institutions. Each year, NSF receives more than 40,000 competitive proposals and makes about 11,000 new awards. Those awards include support for cooperative research with industry, Arctic and Antarctic research and operations, and U.S. participation in international scientific efforts.

mail icon Get News Updates by Email 

Connect with us online
NSF website: nsf.gov
NSF News: nsf.gov/news
For News Media: nsf.gov/news/newsroom
Statistics: nsf.gov/statistics/
Awards database: nsf.gov/awardsearch/

Follow us on social
Twitter: twitter.com/NSF
Facebook: facebook.com/US.NSF
Instagram: instagram.com/nsfgov