text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Biological Sciences (BIO)
Biological Sciences (BIO)
design element
BIO Home
About BIO
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
BIO Program Director and Reviewer Opportunities
Supplements & Other Opportunities
See Additional BIO Resources
View BIO Staff
BIO Organizations
Biological Infrastructure (DBI)
Environmental Biology (DEB)
Emerging Frontiers (EF)
Integrative Organismal Systems (IOS)
Molecular and Cellular Biosciences (MCB)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional BIO Resources
The BRAIN Initiative
FY 2015 BIO Budget Excerpts
BIO's Guidance on Data Management Plans
Dear Colleague Letters: BIO and Foundation-wide
List of BIO Cyberinfrastructure Reports
National Ecological Observatory Network (NEON)
Partnership for Undergraduate Life Science Education (PULSE)
Supplements & Other Opportunities
Science Across Virtual Institutes (SAVI)
Broadening Participation Activities
NSF's Career-Life Balance Initiative
Interdisciplinary Research
BIO Reports
NSF Strategic Plan: 2011-2016
NSF Information Related to the American Recovery and Reinvestment Act of 2009
Merit Review (effective Jan. 14, 2013)
Image Credits
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page


Press Release 06-149
Novel Laboratory Model Reveals Clues to How Blood Starts Clotting

Approach has potential to reveal mechanisms behind variety of reactions within the body

Scientists have developed a microfluidic system that successfully models blood clotting.

Scientists have developed a microfluidic system that successfully models blood clotting.
Credit and Larger Version

October 17, 2006

Researchers at the University of Chicago have crafted a simple model for predicting when and where hemostasis -- the technical term for blood clotting -- will occur. The microfluidic system that they created focuses on the interactions between blood and surfaces patterned to trigger blood clotting. It allows the researchers to separately monitor clotting in both blood plasma and a chemical model.

The researchers, led by National Science Foundation CAREER awardee Rustem Ismagilov, believe the methodology may prove useful in a range of studies, adding a powerful tool for predicting the dynamics of other complex biochemical networks.

The system successfully modeled the workings of a complex biochemical network by showing how the start of clotting depends upon localization of clotting stimuli. The researchers were even able to use the model to predict behavior that they later confirmed with human blood plasma, finding that blood can be exposed to significant amounts of clotting stimuli, such as tissue factor, without initiating clotting.

Lead author Christian Kastrup and his colleagues present their research results in the Oct. 16, 2006, online Early Edition of the Proceedings of the National Academy of Sciences.

For additional information, see the University of Chicago press release at: http://www-news.uchicago.edu/releases/06/061016.clotting.shtml.

-NSF-

Media Contacts
Joshua A. Chamot, NSF, (703) 292-7730, jchamot@nsf.gov
Steve Koppes, University of Chicago, (773) 702-8366, s-koppes@uchicago.edu

Program Contacts
Janice M. Hicks, NSF, (703) 292-4956, jhicks@nsf.gov

Principal Investigators
Rustem F. Ismagilov, University of Chicago, (773) 702-5816, r-ismagilov@uchicago.edu

Related Websites
Ismagilov group homepage: http://ismagilovlab.uchicago.edu/

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Email this pagePrint this page
Back to Top of page