Email Print Share

News Release 07-024

How Plants Manage Calcium May Reduce Effects of Acid Rain

Results may lead to hardier plants

Photo of sugar maple trees

Research on plant calcium may protect trees like sugar maples from acid rain.


March 8, 2007

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

A new understanding of how plants manage their internal calcium levels could lead to modifying plants to avoid damage from acid rain. The pollutant disrupts calcium balance in plants by leaching significant amounts of the mineral from leaves as well as the agricultural and forest soils the plants live in.

"Our findings should help scientists understand how plant ecosystems respond to soil calcium depletion and to design appropriate strategies to protect the environment," said Zhen-Ming Pei, a Duke University biologist who led the study, which is published in the March 9, issue of the journal Science."

The research was supported by the National Science Foundation (NSF), the U.S. Department of Agriculture and Xiamen University in China.

To grow, a plant needs a reliable supply of calcium, which enters the plant dissolved in water the roots take in from surrounding soil. As the water circulates through a plant, dissolved calcium gets shuttled where it is needed to give the plant's cells their structural rigidity. But calcium supplies coming into the plant cycle up and down over the course of the day, dropping to a minimum at night.

"Calcium is a key regulator of vital physiological functions in both plants and animals," said Maryanna Henkart, director of NSF's Division of Molecular and Cellular Biosciences. "The discovery of the relationship between calcium in soil, in plant cells, and cellular mechanisms sheds new light on the role of this important mineral in plant growth and development."

Plants use molecular sensors and flows of chemical messengers to detect and regulate the storage and distribution of vital nutrients such as water and calcium. To track the calcium sensors in the laboratory plant Arabidopsis, Pei and his coworkers used molecules originally found in jellyfish that emit light in the presence of calcium. To deduce the calcium sensor's role, the researchers also introduced an altered version of the sensor protein that abolishes the sensor's effects.

According to Pei, the sensors try to detect how much calcium there is and coordinate that level with growth and development. "If the sensors detect there is not enough calcium, they may tell the plant to hold off on growing, at least until it gets more calcium."

Although acid rain robs soil of much of its calcium, enough is still left for plants to live on, Pei added. But he suspects that sensors may misinterpret "less" as "too little" in those plants and unnecessarily signal for growth shutdowns.

"Some soils have lost as much as 75 percent of their calcium during the past century," Pei said. "One way to respond is to add new calcium to the soil. But we can't do that everywhere that it's needed, and it is also expensive. Perhaps a plant's calcium sensors could instead be tricked into interpreting "less" as "still enough" and keep building new cell walls."

Other Duke researchers who participated in the current study were postdoctoral researchers Ru-Hang Tang and Shengcheng Han; Hailei Zheng, a visiting professor from Xiamen University; Charles Cook, a laboratory technician; Christopher Choi, an undergraduate student; Todd Woerner, a chemistry instructor; and Robert Jackson, a biologist and director of Duke's Center on Global Change.

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, email: cdybas@nsf.gov
Monte Basgall, Duke University, (919) 681-8057, email: monte.basgall@duke.edu

The U.S. National Science Foundation propels the nation forward by advancing fundamental research in all fields of science and engineering. NSF supports research and people by providing facilities, instruments and funding to support their ingenuity and sustain the U.S. as a global leader in research and innovation. With a fiscal year 2023 budget of $9.5 billion, NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and institutions. Each year, NSF receives more than 40,000 competitive proposals and makes about 11,000 new awards. Those awards include support for cooperative research with industry, Arctic and Antarctic research and operations, and U.S. participation in international scientific efforts.

mail icon Get News Updates by Email 

Connect with us online
NSF website: nsf.gov
NSF News: nsf.gov/news
For News Media: nsf.gov/news/newsroom
Statistics: nsf.gov/statistics/
Awards database: nsf.gov/awardsearch/

Follow us on social
Twitter: twitter.com/NSF
Facebook: facebook.com/US.NSF
Instagram: instagram.com/nsfgov