text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Geosciences (GEO)
Geosciences (GEO)
design element
GEO Home
About GEO
Funding Opportunities
Advisory Committee
Career Opportunities
GEO Education Program
See Additional GEO Resources
View GEO Staff
GEO Organizations
Atmospheric and Geospace Sciences (AGS)
Earth Sciences (EAR)
Ocean Sciences (OCE)
Polar Programs (PLR)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Merit Review
NSF Outreach
Policy Office
Additional GEO Resources
Advisory Committee Meetings
Career Opportunities
Funding Rates
Budget Excerpt
Dynamics Earth: GEO Imperatives and Frontiers, 2015-2020 (A Report of AC-GEO (12/14))
Strategic Framework for Topical Areas, 2012 (Follow on to GEO Vision)
GEO Data Policies
U.S. Global Change Research Program
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Press Release 08-011
Lithium and Beryllium No Longer "Lack Chemistry"

Scientists predict antisocial metals will bond under high-pressure conditions

Interaction of lithium and beryllium under high density and pressure.

Scientists predict lithium and beryllium will form stable alloys at high density and pressure.
Credit and Larger Version

January 25, 2008

Even though the lightest known metals in the universe, lithium (Li) and beryllium (Be), do not bind to one another under normal atmospheric or ambient pressure, an interdisciplinary team of Cornell scientists predicts in the Jan. 24 issue of Nature that Li and Be will bond under higher levels of pressure and form stable Li-Be alloys that may be capable of superconductivity. Superconductivity is the flow of electricity with zero resistance.

The Inorganic, Bioinorganic and Organometallic Chemistry program at the National Science Foundation (NSF) supported the research because little work had been done to predict the properties of metals under high pressure.

"We found that chemists working on inorganic compounds and inorganic reactions under high pressure were interested in the predictions and felt it would stimulate useful interactions between theorists and experimentalists," said NSF Program Manager Michael Clarke.

Of the four stable Li-Be alloys predicted by the scientists' computational study, the alloy with the ratio of one Li atom to one Be atom (LiBe) shows the greatest potential for superconducting applications.

A most unexpected finding in the study is the predicted existence of two-dimensional electron gas layers within a tightly compressed three-dimensional LiBe compound.

"It's like taking a nice layer cake, squeezing the hell out of it, and lo and behold, out of what would be expected to be a jumbled-up mess, there emerges a neat hazelnut cream layer," said co-author Roald Hoffmann, the 1981 chemistry Nobel laureate and Cornell's Frank H.T. Rhodes Professor in Humane Letters Emeritus.

But it makes sense, according to co-author Neil Ashcroft, Cornell's Horace White Professor of Physics Emeritus. When layers of Li and Be are squeezed together at elevated pressures ranging from five to 10 times greater than the pressure at which diamond forms, outer electrons from the Li layer get squeezed into the vicinity of the Be layer, forming two-dimensional gas layers.

"It is extraordinary that such remarkably two-dimensional behavior emerges from the conjunction of two such ‘simple' constituents. It is actually a fine example of ‘emergent' phenomena," Ashcroft said. He added that they do not yet know whether their theoretical Li-Be alloys will become notable superconductors but creating and testing the compounds would be relatively simple.

Ji Feng, now a postdoctoral researcher at Harvard, is lead author of the Nature paper. Richard Hennig, a Cornell assistant professor in materials science and engineering, is an additional co-author of the paper.

The research was supported by NSF Division of Chemistry grant #0613306; Division of Materials Research grants #0601461 and #0706507; and Division of Earth Sciences grant #0703226.


Media Contacts
Diane Banegas, National Science Foundation, (703) 292-4489, dbanegas@nsf.gov
Jennifer Grasswick, National Science Foundation, (703) 292-4972, jgrasswi@nsf.gov
Lauren Gold, Cornell University, (607) 255-9736, lg34@cornell.edu

Program Contacts
Michael Clarke, National Science Foundation, (703) 292-4967, mclarke@nsf.gov
Daryl Hess, National Science Foundation, (703) 292-4942, dhess@nsf.gov
Robin Reichlin, National Science Foundation, (703) 292-8556, rreichli@nsf.gov
Harsh Deep Chopra, National Science Foundation, (703) 292-4543, hchopra@nsf.gov

Principal Investigators
Roald Hoffmann, Cornell University, (607) 255-5014, rh34@cornell.edu
Neil Ashcroft, Cornell University, (607) 255-5014, nwa@ccmr.cornell.edu
Richard Hennig, Cornell University, (607) 255-5014, rhennig@cornell.edu

Related Websites
Cornell news release: http://www.news.cornell.edu/stories/Jan08/Hoffmann.LiBe.html

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2016, its budget is $7.5 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives more than 48,000 competitive proposals for funding and makes about 12,000 new funding awards. NSF also awards about $626 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/


Under high pressure, four lithium beryllium alloys are predicted.
Under high pressure, four lithium beryllium alloys are predicted.
Credit and Larger Version

Email this pagePrint this page
Back to Top of page