text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Office of Integrative Activities (OIA)
Office of Integrative Activities (OIA)
design element
OIA Home
About OIA
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
See Additional OIA Resources
View OIA Staff
OIA Organizations
Integrative Programs and Activities
Experimental Program to Stimulate Competitive Research (EPSCoR)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional OIA Resources
Perspectives on Broader Impacts
Merit Review Process Fiscal Year 2013 Digest
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page


Press Release 08-137
Universally Speaking, Earthlings Share a Nice Neighborhood

New computer simulations put solar system in universal perspective

An artist's depiction of Jupiter, which may protect earth from comets.

Jupiter may act as our solar system's "junk yard dog," protecting the Earth from comets.
Credit and Larger Version

August 7, 2008

View a video interview with theoretical astrophysicist Ed Thommes of the University of Guelph.

We don't have spacecraft to take us outside our solar system--not yet, at least. Still, astronomers thought they had a pretty good understanding of how our solar system formed and in turn, how others formed. In the last dozen years, nearly 300 exoplanets have been discovered. Are the solar systems in which they reside indeed like our own? Without knowledge or observations to the contrary, conventional knowledge said yes. Three Northwestern University researchers questioned that assumption and explored this question. What they learned is that the solar system in which the Earth orbits our sun is actually uncommon.

Edward Thommes, Soko Matsumura and Frederic Rasio were the first to develop large-scale, sophisticated computer simulations to model the formation of planetary systems from beginning to end. Because of computing limitations, earlier models provided only brief glimpses of the process. The surprising findings of their study titled, "Gas Disks to Gas Giants: Simulating the Birth of Planetary Systems," are detailed in the August 8, 2008 issue of Science magazine.

The researchers used a range of computer simulations to explore the formation of extra-solar planetary systems. They were able to show the action of a planet-forming circumstellar disk in three different starting condition scenarios at different intervals from the beginning of the universe to 500 million years of evolution. They found that our solar system represents the rare case in which big gas giants form, but do not migrate to the inner planetary system, and the orbits of all of the planets in the system are circular and stable.

"We now know that these other planetary systems don't look like the solar system at all," said Frederic A. Rasio, senior author of the Science paper, and a theoretical astrophysicist and professor of physics and astronomy in Northwestern's Weinberg College of Arts and Sciences. "We now better understand the process of planet formation and can explain the properties of the strange exoplanets we've observed. We also know that the solar system is special and understand at some level what makes it special."

The computer simulations were performed on a supercomputing cluster operated by Northwestern's Theoretical Astrophysics Group and partially funded by a Major Research Instrumentation grant from the National Science Foundation (NSF). Rasio's research group on exoplanets also is funded by a grant from the NSF Division of Astronomy.

-NSF-

Media Contacts
Lisa-Joy Zgorski, NSF, (703) 292-8311, lisajoy@nsf.gov
Megan Fellman, Northwestern University, (847) 491-3115, fellman@northwestern.edu

Principal Investigators
Edward Thommes, University of Guelph, ethommes@physics.uoguelph.ca
Frederic Rasio, Northwestern University, 847-467-3419, rasio@northwestern.com

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2015, its budget is $7.3 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 48,000 competitive proposals for funding, and makes about 11,000 new funding awards. NSF also awards about $626 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Ed Thommes discusses surprising solar system findings detailed in the Aug. 8 issue of Science.
View Video
Ed Thommes discusses surprising solar system findings in the Aug. 8 issue of Science.
Credit and Larger Version

Depiction of the range of computer simulations used to explore the formation of extra-solar systems.
Depiction of the range of computer simulations used to explore the formation of extra-solar systems.
Credit and Larger Version

The researchers' findings are published in the August 8 issue of Science magazine.
The researchers' findings are published in the August 8 issue of Science magazine.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page