text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 08-179
As Sticky as a Gecko ... but Ten Times Stronger!

Illustration of a gecko hanging off a ledge holding nine more geckos.

A gecko hangs off a ledge holding nine more geckos, demonstrating the power of a new adhesive.
Credit and Larger Version

October 14, 2008

The gecko's amazing ability to stick to surfaces and walk up walls has inspired many researchers to manufacture materials that mimic the special surface of a gecko's foot. The secret behind the gecko's ability to stick so well is a forest of pillars at the micro-/nano-scale on the underside of the gecko's foot. Because there are so many pillars so close together, they are held tightly to the surface the gecko is walking on by a molecular force called the Van der Waals force. This relatively weak force causes uncharged molecules to attract each other.

In an unprecedented feat, Liming Dai, at the University of Dayton, and colleagues report in the October 10th issue of Science successful construction of a gecko-inspired adhesive that is ten times stronger than a gecko, at about 100 newtons per square centimeter.

The researchers constructed their adhesive out of two slightly different layers of multi-walled carbon nanotubes. The lower layer is composed of vertically-aligned carbon nanotubes, while the upper segment--which comes into contact with the surface it is sticking to--is curly, like a mess of spaghetti.

As shown in the figure, the adhesive sticks best when it is pulled down parallel to the surface it is sticking to--this is called shear adhesion. This action arranges the tips of the curly nanotubes so they have maximum contact with the substrate, thereby maximizing the Van der Waals force. Pulling the adhesive off in a motion perpendicular to the substrate is much easier--at this angle the sticking force is ten times weaker.

In this way, the adhesive has strong shear adhesion for firm attachment and relatively weak adhesion for detachment perpendicularly to the substrate. Just like a gecko, the adhesive can stick to a wall when needed, and then lift off easily to take the next step. This breakthrough, supported by the National Science Foundation, will have many technological applications.

--Zina Deretsky, NSF

-NSF-

Media Contacts
Joshua A. Chamot, NSF, (703) 292-7730, jchamot@nsf.gov
Shawn Robinson, University of Dayton, (937) 229 3391, shawn.robinson@notes.udayton.edu

Program Contacts
Ken P. Chong, NSF, (703) 292-7008, kchong@nsf.gov

Principal Investigators
Liming Dai, University of Dayton, (937) 830 9395, liming.dai@hotmail.com

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Cover of the October 10, 2008 issue of Science magazine.
The October 10, 2008 issue of Science magazine.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page