text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 09-063
Scientists Pierce Veil of Clouds to "See" Lightning Inside a Volcanic Plume

Collect first data on lightning during volcano's initial eruption

Photo of lightning in the clouds around a volcanic plume.

Scientists have pierced the veil of clouds around a volcanic plume to "see" lightning.
Credit and Larger Version

April 7, 2009

Researchers hit the jackpot in late March, when, for the first time, they began recording data on lightning in a volcanic eruption--right from the start of the eruption.

Using a multi-station, ground-based Lightning Mapping Array, the scientists advanced our understanding of electrical activity during a volcanic eruption.

Portable Lightning Mapping Arrays are now set up in several areas of the country, and are becoming increasingly used by meteorologists to issue weather warnings.

The arrays have been deployed at volcanoes only twice before.

Thousands of individual segments of a single lightning stroke can be mapped with the Lightning Mapping Array, and later analyzed to reveal how lightning initiates and spreads through a thunderstorm, or in a volcanic plume.

When Alaska's Redoubt Volcano started rumbling in January, a team of researchers hurried to set up a series of the arrays.

When the volcano erupted on March 22 and 23, 2009, the arrays returned dramatic information about the electricity created within volcanic plumes, and the resulting lightning.

"For the first time, we had the Lightning Mapping Array on site before the initial eruption," said scientist Sonja Behnke of New Mexico Tech.

"The data will allow us to better understand the electrical charge structure inside a volcanic plume," said scientist Ron Thomas of New Mexico Tech. "That should help us learn how the plume is becoming electrified, and how it evolves over time."

Bradley Smull, program director in the National Science Foundation (NSF)'s Division of Atmospheric Sciences, which funded the research, said the information will give scientists insights into the electrical mechanisms in both plumes above active volcanoes, and in lightning spawned in thunderstorms.

NSF awarded New Mexico Tech a grant to study volcanic lightning in 2007, with the University of Alaska at Fairbanks and the Alaska Volcano Observatory as collaborators.

"With data from the Lightning Mapping Array, new details of volcanic plume lightning will emerge," Smull said. "The opportunity for stand-alone analysis, and comparisons with last year's similar observations of Chaiten Volcano in Chile, will tell us much more about this phenomenon."

Redoubt was "a perfect laboratory," said physicist Paul Krehbiel of New Mexico Tech. "It erupted on schedule--and gave us two months' notice."

Advance warning was critical to the mission.

In late 2008, Redoubt showed initial signs of seismic activity. Volcanologist Steve McNutt and colleagues at the Alaska Volcano Observatory (AVO) started scouting locations for sensors.

Then in March, "this volcano, in the space of a week, had several major eruptions that produced prolific lightning," Krehbiel said.

The four Lightning Mapping Array stations are located along the east side of Cook Inlet, across from the volcano.

Thomas, Krehbiel, Behnke and McNutt found cooperative people in accessible locations to serve as caretakers for the stations: The northernmost sensor is at a school teacher's house in Nikiski. The second is at a fire station south of Kenai. A third is at Clam Gulch Lodge. The southernmost and fourth sensor is at a public school in Ninilchik.

In addition to the Lightning Mapping Array, the AVO is gathering data from 11 local seismic stations, two infrasound arrays and two radar stations.

"It's hard to get the sensors set up before a volcano erupts," said Thomas. "You plan--and hope you can do something like this once in a lifetime."

The Redoubt eruptions are not over yet. After quieting down and appearing to go into a dome-building phase, just before sunrise this past Saturday the volcano blew its top in the biggest eruption so far.

"The lightning  activity was as strong or stronger than we have seen in large midwestern thunderstorms," Krehbiel said. "The radio frequency noise was so strong and continuous that people living in the area would not have been able to watch broadcast VHF television stations."

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov
Thomas Guengerich, New Mexico Tech, (575) 835-5617, TGuengerich@admin.nmt.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Photo of Redoubt which was still steaming at dawn on Saturday, April 4, 2009.
Redoubt was still steaming at dawn on Saturday, April 4, 2009.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page