text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 09-133
Desert Dust Alters Ecology of Colorado Alpine Meadows

Accelerated snowmelt, prompted by dust, changes how plants respond to seasonal climate cues

Photo of the San Juan Mountains of Colorado.

More dust covers snow in the San Juan Mountains of Colorado than previously documented.
Credit and Larger Version

June 29, 2009

Accelerated snowmelt--precipitated by desert dust blowing into the mountains--changes how alpine plants respond to seasonal climate cues that regulate their life cycles, according to results of a new study reported this week in the journal Proceedings of the National Academy of Sciences (PNAS). These results indicate that global warming may have a greater influence on plants' annual growth cycles than previously thought.

Current mountain dust levels are five times greater than they were before the mid-19th century, due in large part to increased human activity in deserts.

"Human use of desert landscapes is linked to the life cycles of mountain plants, and changes the environmental cues that determine when alpine meadows will be in bloom, possibly increasing plants' sensitivity to global warming," said Jay Fein, program director in the National Science Foundation (NSF)'s Division of Atmospheric Sciences, which funded the research in part.

This year, 12 dust storms have painted the mountain snowpack red and advanced the retreat of snow cover, likely by more than a month across Colorado.

"Desert dust is synchronizing plant growth and flowering across the alpine zone," said Heidi Steltzer, a Colorado State University scientist who led the study. "Synchronized growth was unexpected, and may have adverse effects on plants, water quality and wildlife."

"It's striking how different the landscape looks as result of this desert-and-mountain interaction," said Chris Landry, director of the Center for Snow and Avalanche Studies (CSAS) in Silverton, Colo., who, along with Tom Painter, director of the Snow Optics Laboratory at the University of Utah, contributed to the study.

"Visitors to the mountains arriving in late June will see little remaining snow," said Landry, "even though snow cover was extensive and deep in April. The snow that remains will be barely distinguishable from the surrounding soils.

Earlier snowmelt by desert dust, said Painter, "depletes the natural water reservoirs of mountain snowpacks and in turn affects the delivery of water to urban and agricultural areas."

With climate change, warming and drying of the desert southwest are likely to result in even greater dust accumulation in the mountains.

In an alpine basin in the San Juan Mountains, the researchers simulated dust effects on snowmelt in experimental plots. They measured dust's acceleration of snowmelt on the life cycles of alpine plants.

The timing of snowmelt signals to mountain plants that it's time to start growing and flowering. When dust causes early snowmelt, plant growth does not necessarily begin soon after the snow is gone.

Instead, plants delay their life cycle until air temperatures have warmed consistently above freezing.

"Climate warming could therefore have a great effect on the timing of growth and flowering," said Steltzer.

Competition for water and nutrient resources among plants should increase, leading to the loss of less competitive species. Delayed plant growth could increase nutrient losses, decreasing water quality.

Similarity in flowering times and plant growth will result in abundant resources for wildlife for a short time rather than staggered resources over the whole summer, Steltzer believes.

"With increasing dust deposition from drying and warming in the deserts," she said, "the composition of alpine meadows could change as some species increase in abundance, while others are lost, possibly forever."

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov
Kimberly Sorenson, Colorado State University, (970) 491-0757, kimberly.sorenson@colostate.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Photo of Chris Landry carrying out simulated dust effects on snowmelt.
Scientists like Chris Landry, pictured, simulated dust effects on snowmelt in experiments.
Credit and Larger Version

Photo of scientists placing black fabric which absorbs the Sun's energy.
Experiments included using black fabric to absorb the Sun's energy; dust was added to other sites.
Credit and Larger Version

Photo of Andrew Temple of CSAS.
Researchers found twelve "dust events" this winter; Andrew Temple of CSAS is pictured.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page