text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 09-154
LIGO Listens for Gravitational Echoes of the Birth of the Universe

With sophisticated detection technology, results narrow range of waves from the Big Bang, and update theories about universe formation

Photo showing an aerial view of the LIGO Livingston Observatory, located in Livingston, Louisiana.

An aerial view of the LIGO Livingston Observatory, located in Livingston, Louisiana.
Credit and Larger Version

August 19, 2009

View a webcast featuring University of Minnesota physicist Vuk Mandic. For LIGO B-roll, which is available on Betacam SP, please contact Dena Headlee at dheadlee@nsf.gov.

An investigation by the LIGO (Laser Interferometer Gravitational-Wave Observatory) Scientific Collaboration and the Virgo Collaboration has significantly advanced understanding of the early evolution of the universe.

Analysis of data taken over a two-year period, from 2005 to 2007, has set the most stringent limits yet on the amount of gravitational waves that could have come from the Big Bang in the gravitational wave frequency band where LIGO can observe. In doing so, the gravitational-wave scientists have put new constraints on the details of how the universe looked in its earliest moments.

"LIGO, which was started decades ago by visionary scientists, and supported by the National Science Foundation [NSF] as the ultimate high-risk, high-pay-off research project, is now on the verge of an important discovery," said Beverly Berger, NSF program manager for gravitational physics. "LIGO is making real astronomical measurements and looking at the universe in a completely new way."

"This result was one of the long-lasting milestones that LIGO was designed to achieve," said Vuk Mandic, of the University of Minnesota, cochair of LIGO's Stochastic Working Group.

Much like it produced the cosmic microwave background, the Big Bang is believed to have created a flood of gravitational waves-ripples in the fabric of space and time-that still fill the universe and carry information about the universe in its first minutes of existence. These waves would be observed as the "stochastic background," analogous to a superposition of many waves of different sizes and directions on the surface of a pond. The strength of this potential signal can reveal the properties of the universe in its earliest stages.

Earlier measurements of the cosmic microwave background have placed the most stringent upper limits of the stochastic gravitational wave background at very large distance scales and low frequencies. The new measurements by LIGO directly probe the gravitational wave background at time scales much shorter than accessible by the cosmic microwave background.

The research, which is described in "An Upper Limit on the Amplitude of Stochastic Gravitational-Wave Background of Cosmological Origin" (Nature, August 20), also constrains models of cosmic strings, objects that are proposed to have been left over from the beginning of the universe and subsequently stretched to enormous lengths by the universe's expansion; the strings, some cosmologists say, can form loops that produce gravitational waves as they oscillate, decay and eventually disappear.

Gravitational waves carry with them information about their violent origins and about the nature of gravity that cannot be obtained by conventional astronomical tools. The existence of the waves was predicted by Albert Einstein in 1916 in his general theory of relativity. The instruments of LIGO (and its international partners) have been actively searching for the waves since 2002.

The authors of the new paper report that the stochastic background of gravitational waves has not yet been discovered. But the nondiscovery of the background described in the Nature paper already offers its own brand of insight into the universe's earliest history.

"It tells us what the universe is not like," said Mandic. "Since we have not observed the stochastic background, some of these early-universe models that predict a relatively large stochastic background have been ruled out," says Mandic. "We now know a bit more about parameters that describe the evolution of the universe when it was less than one minute old."

The analysis used data collected from the LIGO interferometers, a 2 km and a 4 km detector in Hanford, Washington, and a 4 km instrument in Livingston, Louisiana. Each of the L-shaped interferometers uses a laser split into two beams. The two beams travel back and forth down long interferometer arms and are used to monitor the difference between the two interferometer arm lengths.

According to the general theory of relativity, one interferometer arm is slightly stretched while the other is slightly compressed when a gravitational wave passes by. The interferometer is constructed in such a way that it can detect a change of less than a thousandth the diameter of an atomic nucleus in the lengths of the arms relative to each other. Because of this extraordinary sensitivity, the instruments can now test some models of the evolution of the early universe that are expected to produce the stochastic background.

"Advanced LIGO will go a long way in probing early universe models, cosmic-string models, and other models of the stochastic background. We can think of the current result as a hint of what is to come," Mandic explained.

Once it goes online in 2014, Advanced LIGO, which will utilize the infrastructure of the LIGO observatories and be 10 times more sensitive than the current instrument, will allow scientists to detect cataclysmic events such as black-hole and neutron-star collisions at 10-times-greater distances.

"With Advanced LIGO, a major upgrade to our instruments, we will be sensitive to sources of extragalactic gravitational waves in a volume of the universe 1,000 times larger than we can see at the present time. This will mean that our sensitivity to gravitational waves from the Big Bang will be improved by orders of magnitude," said Jay Marx of the California Institute of Technology, LIGO's executive director.

"Gravitational waves are the only way to directly probe the universe at the moment of its birth; they're absolutely unique in that regard. We simply can't get this information from any other type of astronomy. This is what makes this result in particular and gravitational-wave astronomy in general, so exciting," says David Reitze, a professor of physics at the University of Florida and spokesperson for the LIGO Scientific Collaboration.

"The scientists of the LIGO Scientific Collaboration and the Virgo Collaboration have joined their efforts to make the best use of their instruments. Combining simultaneous data from the LIGO and Virgo interferometers gives information on gravitational-wave sources not accessible by other means. It is very suggestive that the first result of this alliance makes use of the unique feature of gravitational waves being able to probe the very early universe. This is very promising for the future," says Francesco Fidecaro, a professor of physics with the University of Pisa and the Istituto Nazionale di Fisica Nucleare, and spokesperson for the Virgo Collaboration.

Maria Alessandra Papa, senior scientist at the Max Planck Institute for Gravitational Physics and the head of the LSC overall data analysis effort adds, "Hundreds of scientists work very hard to produce fundamental results like this one: the instrument scientists who design, commission and operate the detectors, the teams who prepare the data for the astrophysical searches and the data analysts who develop and implement sensitive techniques to look for these very weak and elusive signals in the data."

The LIGO project, which is funded by NSF, was designed and is operated by Caltech and the Massachusetts Institute of Technology for the purpose of detecting gravitational waves, and for the development of gravitational-wave observations as an astronomical tool.

Research is carried out by the LIGO Scientific Collaboration, a group of 700 scientists at universities around the United States and in 11 foreign countries. The LIGO Scientific Collaboration interferometer network includes the LIGO interferometers and the GEO600 interferometer, which is located near Hannover, Germany, and designed and operated by scientists from the Max Planck Institute for Gravitational Physics, along with partners in the United Kingdom funded by the Science and Technology Facilities Council (STFC).

The Virgo Collaboration designed and constructed the 3 km long Virgo interferometer located in Cascina, Italy, funded by the Centre National de la Recherche Scientifique (France) and by the Istituto Nazionale di Fisica Nucleare (Italy). The Virgo Collaboration consists of 200 scientists from five Europe countries and operates the Virgo detector. Support for the operation comes from the Dutch-French-Italian European Gravitational Observatory Consortium. The LIGO Scientific Collaboration and Virgo work together to jointly analyze data from the LIGO, Virgo, and GEO interferometers.

The next major milestone for LIGO is the Advanced LIGO Project, slated to begin operation in 2014. Advanced LIGO will incorporate advanced designs and technologies that have been developed by the LIGO Scientific Collaboration. It is supported by the NSF, with additional contributions from the U.K.'s STFC and Germany's Max Planck Society.

-NSF-

Media Contacts
Lisa-Joy Zgorski, NSF, (703) 292-8311, lisajoy@nsf.gov
Kathy Svitil, California Institute of Technology, (626) 395-8022, ksvitil@caltech.edu

Program Contacts
Beverly Berger, NSF, (703) 292-7372, bberger@nsf.gov
Tom Carruthers, NSF, (703) 292-7373, tcarruth@nsf.gov
Dave Reitze, University of Florida / LIGO Spokesman, 352-392-3582, reitze@phys.ufl.edu

Related Websites
Einstein's Messengers, an NSF LIGO documentary: http://www.nsf.gov/news/mmg/mmg_disp.cfm?med_id=58443&from=search_list
CalTech Media Relations: http://media.caltech.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Vuk Mandic of the LIGO Scientific Collaboration describes exciting, new findings.
View Video
Vuk Mandic of the LIGO Scientific Collaboration describes exciting, new findings.
Credit and Larger Version

Photo showing an aerial view of the LIGO Hanford Observatory, located in southeastern Washington.
An aerial view of the LIGO Hanford Observatory, located in southeastern Washington.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page