text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 10-012
Watching Crystals Grow May Lead to Faster Electronic Devices

Research could improve manufacture of defect-free, thin films needed to make semiconductors

Illustration showing how atoms land on top of each other creating rough spots on thin films.

Atoms land on top of each other, creating rough spots on thin films used to produce semiconductors.
Credit and Larger Version

January 21, 2010

Watch a crystal grow in this video.

The quest for faster electronic devices recently got something more than a little bump up in technological knowhow. Scientists at Cornell University, Ithaca, N.Y. discovered that the thin, smooth, crystalline sheets needed to make semiconductors, which are the foundation of modern computers, might be grown into smoother sheets by managing the random darting motions of the atomic particles that affect how the crystals grow.

"The main benefit of smooth crystalline films in electronic devices is that electrons can travel from one place to another in a device with minimal disruption," said Charles Ying, program director in the National Science Foundation's Division of Materials Research. "This in turn leads to faster electronics and lower electricity consumption."

The research is funded in part by the Cornell Center for Materials Research, which is supported by the National Science Foundation. Findings are reported in the Jan. 22 online edition of the journal Science.

Led by assistant professor of physics Itai Cohen at Cornell, researchers recreated conditions of layer-by-layer crystalline growth using particles much bigger than atoms, but still small enough that they behave like atoms.  Similar to using beach balls to model the behavior of sand, scientists used a solution of tiny plastic spheres 50 times smaller than a human hair to reproduce the conditions that lead to crystallization on the atomic scale. With this precise modeling, they could watch how crystalline sheets grow.

Using an optical microscope, the scientists could watch exactly what their "atoms"--actually, micron-sized silica particles suspended in fluid--did as they crystallized. What's more, they were able to manipulate single particles one at a time and test conditions that lead to smooth crystal growth.

"These particles are big and slow enough that you can see what's going on in real time," explained graduate student Mark Buckley. Watching them, researchers discovered that the random darting motion of a particle is a key factor that affects how crystals grow.

While some materials grow smooth crystals, others tend to develop bumps and defects--a serious problem for thin-film manufacturing. Researchers are trying to improve the process at the atomic scale, but a major challenge to growing thin films with atoms is that the atoms often randomly form mounds, rather than crystallizing into thin sheets.

This happens because as atoms are deposited onto a substrate, they initially form small crystals, called islands. When more atoms are dumped on top of these crystals, the atoms tend to stay atop the islands, rather than hopping off the edges. This creates the pesky rough spots, "and it's game over" for a perfect thin film, Cohen said.

Conventional theory says that atoms that land on top of islands feel an energetic "pull" from other atoms that keeps them from rolling off. In the system used for the experiment, the researchers eliminated this pull by shortening the bonds between their particles. But they still saw that their particles hesitated at the islands' edges.

Further analysis using optical tweezers that manipulated individual particles allowed the researchers to measure just how long it took for particles to move off the crystal islands. Because the particles were suspended in a fluid that knocks them about, they exhibited Brownian motion--a random walk of sorts. As the particles move and diffuse from one area to another, the researchers noted that the distance a particle had to travel to "fall" off an island's edge was three times farther than moving laterally from one site on the island to another. Because the particles have to traverse this distance in a Brownian fashion, it can take particles nine times longer to complete the "fall." This difference explained why the researchers still saw a barrier at the island edge.

Atoms on an atomic crystalline film move in a manner similar to the Brownian particles, since the vibrations of the underlying crystal, called phonons, tend to jostle them about. The researchers surmised that in addition to the bonding between the atoms, this random motion may also contribute to the barrier at the crystal's edge, and hence, the roughness of the crystal film.

"If the principles we have uncovered can be applied to the atomic scale, scientists will be able to better control the growth of thin films used to manufacture electronic components for our computers and cell phones," Cohen said.

The paper's authors are former postdoctoral associate Rajesh Ganapathy, now a faculty member Jawaharlal Nehru Centre for Advanced Scientific Research in Bangalore, India, as well as Sharon Gerbode and Mark Buckley, graduate students in the Cohen lab at Cornell.

In addition to NSF, the work was funded by King Abdullah University of Science and Technology and the Cornell Nanoscale Science and Technology Facility.

-NSF-

Media Contacts
Bobbie Mixon, NSF, (703) 292-8070, bmixon@nsf.gov
Anne Ju, Cornell University, (607) 255-9735, amj8@cornell.edu

Program Contacts
Z. Charles Ying, NSF, (703) 292-8428, cying@nsf.gov
Thomas P. Rieker, NSF, (703) 292-4914, trieker@nsf.gov

Principal Investigators
Itai Cohen, Cornell University, (607) 255-0815, ic64@cornell.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Semiconductors can be grown more smoothly by managing the random darting motions of atomic particles
View Video
Semiconductors can be grown more smoothly by managing the random darting motions of atomic particles
Credit and Larger Version

Illustration showing an atom's time on an island determines whether a rough spot forms.
An atom's time on an "island" determines whether a rough spot forms during manufacturing.
Credit and Larger Version

Cover of the January 22, 2010, issue of the journal Science.
The researchers' finding appears in the Jan. 22, 2010, online issue of the journal Science.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page