text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 10-142
Gulf Oil Spill: NSF Awards Grant to Study Effects of Oil and Dispersants on Louisiana Salt Marsh Ecosystem

Researchers measuring impacts of short- and long-term exposure in extensive Gulf Coast marshes

Photo of a Louisiana salt marsh.

NSF-funded scientists are studying the effect of oil and dispersants on Louisiana salt marshes.
Credit and Larger Version

August 16, 2010

As oil and dispersants wash ashore in coastal Louisiana salt marshes, what will their effects be on these sensitive ecosystems?

The National Science Foundation (NSF) has awarded a rapid response grant to scientist Eugene Turner of Louisiana State University and colleagues to measure the impacts on Gulf Coast salt marshes.

The researchers will track short-term (at the current time, and again at three months) and longer-term (at 11 months) exposure to oil and dispersants.

The coast of Louisiana is lined with extensive salt marshes whose foundation is two species of Spartina grass.

In brackish marshes, Spartina patens is the dominant form. It's locally known as wiregrass, marsh hay and paille a chat tigre (hair of the tiger).

In more saline marshes closer to the Gulf of Mexico, Spartina alterniflora, also called smooth cordgrass and oyster grass, takes over. A tall form of this wavy grass grows on the streamside edge of the marsh; a shorter form grows behind it. 

In their NSF study, the biologists will document changes in these critically-important Spartina grasses, as well as in the growth of other salt marsh plants, and in marsh animals and microbes.

Field investigators will collect samples three times at 35 to 50 sites and analyze the oil and dispersants after each expedition. 

The first field effort is now underway.

"Data are being collected that may be used as indicators of the long-term health of the salt marsh community," says Turner. "From these data, we will obtain information that precedes potentially far-reaching changes.

"This exceptionally large oil spill and subsequent remediation efforts are landmark opportunities to learn about short- and long-term stressors on salt marsh ecosystems."

Salt marsh stressors, such as those from oil spills, can have dramatic, visible, and immediate direct impacts, Turner says, on marshes and surrounding uplands.

"They also have indirect effects because, as oil and dispersants begin to degrade, they enter food webs via primary consumers such as suspension-feeding oysters, deposit-feeding bivalves, and grazing gastropods," says David Garrison of NSF's Division of Ocean Sciences, which funded the research.

These "primary consumers," in turn, serve as food sources for those at higher trophic levels--including humans.

As contaminants make their way up the food chain, they may become concentrated, as in the well-known example of mercury in fish.

"The effects of environmental stressors can cascade through ecosystems as metabolic pathways are altered," says Todd Crowl of NSF's Division of Environmental Biology, which co-funded the research. "The result may be an ecosystem that's radically altered well into the future."

The research, says Turner, is a benchmark study in salt marsh ecosystem change, and will answer key questions about salt marsh stability.

This NSF grant is one of many Gulf oil spill-related rapid response awards made by the federal agency. NSF's response involves active research in social sciences, geosciences, computer simulation, engineering, biology, and other fields. So far, the Foundation has made more than 60 awards totaling nearly $7 million.

For more on the RAPID program, please see the RAPID guidelines.  See also a regularly updated list of RAPIDs targeting the Gulf oil spill response. Because RAPID grants are being awarded continuously, media can also contact Josh Chamot (jchamot@nsf.gov) in the Office of Legislative and Public Affairs for the latest information on granted awards.

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Aerial photo showing the coast of Louisiana, which is lined with extensive salt marshes.
The coast of Louisiana is lined with extensive salt marshes.
Credit and Larger Version

Photo of salt marsh periwinkle snails.
The ubiquitous salt marsh periwinkle snail is among myriad animals that may be affected.
Credit and Larger Version

Photo of ants on a stem of marsh grass.
Ants on a stem of marsh grass are but one species dependent on the salt marsh environment.
Credit and Larger Version

Photo of a vial containing water used to investigate ecosystem health.
Researchers collect samples of bacteria for investigations of ecosystem health.
Credit and Larger Version

Photo of scientists sampling oysters and other shellfish in a Gulf Coast salt marsh.
Scientists sample oysters and other shellfish in Gulf Coast salt marshes.
Credit and Larger Version

Photo of salt marsh samples being collected before the oil arrived.
Salt marsh samples are shown being collected along the Gulf Coast before the oil arrived.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page