text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Computer & Information Science & Engineering (CISE)
Computer & Information Science & Engineering (CISE)
design element
CISE Home
About CISE
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
Advisory Committee for Cyberinfrastructure
See Additional CISE Resources
View CISE Staff
CISE Organizations
Advanced Cyberinfrastructure (ACI)
Computing and Communication Foundations (CCF)
Computer and Network Systems (CNS)
Information & Intelligent Systems (IIS)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional CISE Resources
Contact CISE OAD
Subscribe to receive special CISE announcements
Serving and Working at NSF
Assistant Director's Presentations and Congressional Testimony
CISE Dear Colleague Letters
CISE Distinguished Lecture Series
Webcasts/Webinars
Designing Disruptive Learning Technologies Webinars
WATCH Series
Workshops
CS Bits & Bytes
Big Data Research Initiative
US Ignite at NSF
CISE Strategic Plan for Broadening Participation
Science, Engineering and Education for Sustainability NSF-Wide Investment (SEES)
Cybersecurity Ideas Lab Report
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page


Press Release 10-215
Key Player in Detoxification Pathway Isolated After Decades of Searching

Future studies of P450 compound I could lead to the more efficient design and creation of drugs

Image showing many drug capsules.

The P450 family of enzymes metabolize of about 75 percent of known pharmaceuticals.
Credit and Larger Version

November 12, 2010

Chemical reactions are happening all over the place all the time--on the sun, on the Earth and in our bodies. In many cases, enzymes help make these reactions occur. One family of enzymes, called cytochrome P450s (P450), is important because they help us eliminate toxins.

We know P450s are important to life of all kinds because they have been found in animals, plants, fungi and bacteria, but they are of special interest to humans because they are responsible for metabolism of about 75 percent of known pharmaceuticals.

"The reactions that P450s perform to detoxify a compound are interesting because they activate chemical bonds that are usually not reactive. Chemically speaking, this is a very difficult thing to do in a controlled way," said Michael Green of the department of chemistry at Penn State University. Green and a former student are authors of a paper describing a breakthrough in isolation of P450 compound I, an important chemical intermediate in the process of drug metabolism. This research, supported by the National Science Foundation, appears in the November 12 issue of the journal Science.

In terms of P450s, we humans aren't all the same. One person can be susceptible to poisoning by a toxin or drug more than another based on the levels of the different P450s they have in their liver, lungs and other organs. With such obvious medical and biological importance, these enzymes have been studied in great detail for many years, but exactly how they are able to catalyze these chemical reactions remains to be determined.

At the heart of the problem is P450 compound I. It is a highly reactive chemical species produced by the P450 enzyme to help metabolize a toxin or drug. Because of this extreme reactivity, compound I turns into something else before scientists have a chance to capture it. This has remained a problem for more than 40 years, prompting some to question its very existence.

"This work confirms the existence of compound I, and demonstrates that it can perform the type of chemical reactions for which P450s are known," stated Green. "Now that we can make this chemical species, we can begin to do larger scale studies to understand just how it performs this chemistry."

The research has impact on two major fronts: medicine and basic chemistry. A better understanding of both the biology and chemistry of this family of enzymes will drive research in both fields. Eventually, Green hopes these insights will help chemists understand how to better control the specificity of a given chemical reaction. This knowledge could make production of pharmaceuticals and a variety of commodity chemicals cheaper and more efficient.

-NSF-

Media Contacts
Lisa Van Pay, NSF, (703) 292-8796, lvanpay@nsf.gov
Barbara Kennedy, Penn State University, (814) 863-4682, science@psu.edu

Program Contacts
David Alexander Rockcliffe, NSF, (703) 292-7123, drockcli@nsf.gov

Principal Investigators
Michael Green, Penn State University, (814) 863-0925, mtg10@psu.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Image of November 12, 2010 cover of Science magazine.
This work is featured in the November 12, 2010 issue of Science.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page