text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
Physics (PHY)
design element
PHY Home
About PHY
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Facilities and Centers
PHY Program Director Jobs
See Additional PHY Resources
View PHY Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional PHY Resources
PHY: Investigator-Initiated Research Projects
Physics in the Mathematical and Physical Sciences
Nuclear Science Advisory Committee (NSAC)
High Energy Physics Advisory Panel (HEPAP)
DCL: Announcement of Intent to use an Asynchronous Review Mechanism for Proposals
DCL: Int'l Activities within PHY-Potential Co-Review
PHY COV Report 2012
Response to the PHY COV Report
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page


Press Release 11-094
Why Some Planets Orbit the Wrong Way; Extrasolar Insights Into Our Solar System

NSF-funded research in physics and astronomy yields unexpected results

Image showing the transiting planet orbiting its nearby star in an opposite direction.

A retrograde hot Jupiter: the transiting planet orbits its nearby star in an opposite direction.
Credit and Larger Version

May 11, 2011

More than 500 extrasolar planets--planets that orbit stars other than the sun--have been discovered since 1995. But only in the last few years have astronomers observed that in some of these systems, the star is spinning one way and the planet is orbiting that star in the opposite direction.

"That's really weird, and it's even weirder because the planet is so close to the star," said Frederic A. Rasio, a theoretical astrophysicist at Northwestern University. "How can one be spinning one way and the other orbiting exactly the other way? It's crazy. It so obviously violates our most basic picture of planet and star formation."

The planets in question are typically huge planets called "hot Jupiters" that orbit in very close proximity to their central star. Figuring out how these huge planets got so close to their stars led Rasio and his research team to also explain their flipped orbits. Details of their discovery are published in the May 12th issue of the journal Nature.

"And this discovery is a broader impact of NSF's MRI program support for the acquisition of a computer cluster" said Beverly Berger, an NSF Gravitational Physics Program director. Using it, and performing large-scale computer simulations, Rasio researchers became the first to model how a hot Jupiter's orbit can flip and go in the direction opposite to the star's spin. Gravitational perturbations by a much more distant planet result in the hot Jupiter having both a "wrong way" and a very close orbit.

"Once you get more than one planet, the planets perturb each other gravitationally," Rasio said. "This becomes interesting because that means whatever orbit they were formed on isn't necessarily the orbit they will stay on forever. These mutual perturbations can change the orbits, as we see in these extrasolar systems."

In explaining the peculiar configuration of an extrasolar system, the researchers also have added to our general understanding of planetary system formation and evolution and reflected on what their findings mean for the solar system.

"We had thought our solar system was typical in the universe, but from day one everything has looked weird in the extrasolar planetary systems," Rasio said. "That makes us the oddball really. Learning about these other systems provides a context for how special our system is. We certainly seem to live in a special place."

The physics the research team used to solve the problem is basically orbital mechanics, Rasio said, the same kind of physics NASA uses to send satellites around the solar system.

"It was a beautiful problem," said Naoz, "because the answer was there for us for so long. It's the same physics, but no one noticed it could explain hot Jupiters and flipped orbits."

"Doing the calculations was not obvious or easy," Rasio said, "Some of the approximations used by others in the past were really not quite right. We were doing it right for the first time in 50 years, thanks in large part to the persistence of Smadar."

"It takes a smart, young person who first can do the calculations on paper and develop a full mathematical model and then turn it into a computer program that solves the equations," Rasio added. "This is the only way we can produce real numbers to compare to the actual measurements taken by astronomers."

In their model, the researchers assume a star similar to the sun, and a system with two planets. The inner planet is a gas giant similar to Jupiter, and initially it is far from the star, where Jupiter-type planets are thought to form. The outer planet is also fairly large and is farther from the star than the first planet. It interacts with the inner planet, perturbing it and shaking up the system.

The effects on the inner planet are weak but build up over a very long period of time, resulting in two significant changes in the system: the inner gas giant orbits very close to the star and its orbit is in the opposite direction of the central star's spin. The changes occur, according to the model, because the two orbits are exchanging angular momentum, and the inner one loses energy via strong tides.

The gravitational coupling between the two planets causes the inner planet to go into an eccentric, needle-shaped orbit. It has to lose a lot of angular momentum, which it does by dumping it onto the outer planet. The inner planet's orbit gradually shrinks because energy is dissipated through tides, pulling in close to the star and producing a hot Jupiter. In the process, the orbit of the planet can flip.

Only about a quarter of astronomers' observations of these hot Jupiter systems show flipped orbits. The Northwestern model needs to be able to produce both flipped and non-flipped orbits, and it does, Rasio said.

The title of the paper is "Hot Jupiters From Secular Planet-Planet Interactions." In addition to Rasio and Naoz, other authors of the paper are Will M. Farr, a postdoctoral fellow at the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA); Yoram Lithwick, an assistant professor of physics and astronomy; and Jean Teyssandier, a visiting pre-doctoral fellow, all from Northwestern.

The National Science Foundation, Northwestern's CIERA and the Peter and Patricia Gruber Foundation Fellowship supported the research.

-NSF-

Media Contacts
Lisa-Joy Zgorski, NSF, (703) 292-8311, lisajoy@nsf.gov
Megan Fellman, Northwestern University, (847) 491-3115, fellman@northwestern.edu

Program Contacts
Beverly Berger, NSF, (703) 292-7372, bberger@nsf.gov
Donald Terndrup, NSF, (703) 292-4901, dterndru@nsf.gov

Principal Investigators
Fred Rasio, Northwestern University, 847-467-3419, rasio@northwestern.edu

Co-Investigators
Smadar Naoz, Northwestern University, smadar.naoz@gmail.com

Related Websites
NSF's Astronomy Division: http://www.nsf.gov/div/index.jsp?div=AST
NSF's Major Research Instrumentation (MRI) Program: http://www.nsf.gov/od/oia/programs/mri/
NSF's Gravitational Physics: http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5628&org=PHY&from=home
NSF's Astronomical Sciences Research: http://www.nsf.gov/eyesonthesky.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Email this pagePrint this page
Back to Top of page