text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 11-237
One if by Land, Two if by Sea? Climate Change "Escape Routes"

Similar movement rates needed for animals and plants on land and in the oceans

Image of fish in a coral reef.

Escaping climate change: one if by land, two if by sea? No, according to recent results.
Credit and Larger Version

November 3, 2011

One if by land, two if by sea?

Results of a study published this week in the journal Science show how fast animal and plant populations would need to move to keep up with recent climate change effects in the ocean and on land.

The answer: at similar rates.

The study was supported by the National Science Foundation (NSF), and performed in part through the National Center for Ecological Analysis and Synthesis at the University of California at Santa Barbara.

"That average rates of environmental change in the oceans and on land are similar is not such a surprise," says Henry Gholz, program director in NSF's Division of Environmental Biology.

"But averages deceive," Gholz says, "and this study shows that rates of change are at times greater in the oceans than on land--and as complex as the currents themselves."

Greenhouse gases have warmed the land by approximately one degree Celsius since 1960. That rate is roughly three times faster than the rate of ocean warming. These temperatures have forced wild populations to adapt--or to be on the move, continually relocating.

Although the oceans have experienced less warming overall, plants and animals need to move as quickly in the sea as they do on land to keep up with their preferred environments.

Surprisingly, similar movement rates are needed to out-run climate change. On land, movement of 2.7 kilometers (1.6 miles) per year is needed and in the oceans, movement of 2.2 kilometers (1.3 miles) per year is needed.

"Not a lot of marine critters have been able to keep up with that," says paper co-author John Bruno, a marine ecologist at the University of North Carolina at Chapel Hill. "Being stuck in a warming environment can cause reductions in the growth, reproduction and survival of ecologically and economically important ocean life such as fish, corals and sea birds."

"These results provide valuable insights into how climate will affect biological communities worldwide," says David Garrison, director of NSF's Biological Oceanography Program.

The analysis is an example of the value of synthesis research centers, Garrison says, in addressing society's environmental challenges.

"With climate change we often assume that populations simply need to move poleward to escape warming, but our study shows that in the ocean, the escape routes are more complex," says ecologist Lauren Buckley of the University of North Carolina at Chapel Hill, also a co-author of the paper.

"For example, due to increased upwelling, marine life off the California coast would have to move south [rather than north] to remain in its preferred environment."

"Some of the areas where organisms would need to relocate the fastest are important biodiversity hot spots, such as the coral triangle region in southeastern Asia," says lead author Mike Burrows of the Scottish Association of Marine Science.

Whether by land or by sea, according to these results, all will need to be on the fly.

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Image of a school of tropical fish.
Similar movement rates are needed to stay ahead of climate change on land, in the oceans.
Credit and Larger Version

Image of a lobster's head.
Lobsters may need to keep up the pace to "out-run" the effects of climate change.
Credit and Larger Version

Image of a tropical fish feeding on algae.
Swimming as fast as I can: marine species, and those on land, are avoiding climate change.
Credit and Larger Version

Image of a moray eel in a coral reef.
The habitats of moray eels and other marine species are affected by global warming.
Credit and Larger Version

Image of two fish beneath coral and other fish swimming above.
In a twist, marine life off the California coast would need to move south, not north.
Credit and Larger Version

Cover of the November 4, 2011 issue of the journal Science.
The researchers' work is described in the November 4, 2011 issue of the journal Science.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page