Email Print Share

News Release 06-112

Flatworms at Forefront of Regeneration Research

Scientists identify gene required for flatworms to maintain their stem cells

Researchers recently identified a key gene that maintains stem cells in planaria.

Researchers recently identified a key gene that maintains stem cells in planaria.


August 7, 2006

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

Researchers have identified a gene in planaria--freshwater flatworms renowned for their regenerative abilities--that is key for maintenance of their stem cells. Because planarian stem cells share characteristics with those of humans, the work will aid scientists striving to understand how stem cells can be used to completely repair damaged tissues and organs.

Planaria have been studied for hundreds of years, but modern genomic techniques have given scientists new ways to delve into the molecular biology underlying planarian regeneration.Accordingly, Phillip Newmark and his colleagues at the University of Illinois at Urbana-Champaign (UIUC) used a technique called "RNA interference" to stop a particular gene from producing its encoded protein.Without the protein, the planaria's stem cell population died out, and they lost the ability to regenerate.Now researchers will see if the gene plays a similar role in stem cells from other organisms.

All animals contain stem cells, which are unique because they have no specialized function but can mature into almost any cell type and do almost any job the body requires. In planaria, stem cells are responsible for the animal's ability to regenerate its entire body, even from small very small bits. Planaria are popular for introductory biology experiments because if one is chopped in half, two grow back.In fact, only 1/279th of a planarian is needed to regenerate a complete worm.

Newmark is a CAREER awardee, a National Science Foundation program designed to support the early career-development of those researcher-educators who are deemed most likely to become the academic leaders of the 21st century.

Newmark's work was published in the August issue of Developmental Cell and featured in an August 7 UIUC press release.

-NSF-

Media Contacts
Richard (Randy) Vines, NSF, (703) 292-7963, email: rvines@nsf.gov
James Kloeppel, University of Illinois at Urbana-Champaign, 217-244-1073, email: kloeppel@uiuc.edu

Program Contacts
Judith E. Plesset, NSF, (703) 292-8417, email: jplesset@nsf.gov

Principal Investigators
Phillip Newmark, University of Illinois at Urbana-Champaign, 217-244-4674, email: pnewmark@uiuc.edu

The U.S. National Science Foundation propels the nation forward by advancing fundamental research in all fields of science and engineering. NSF supports research and people by providing facilities, instruments and funding to support their ingenuity and sustain the U.S. as a global leader in research and innovation. With a fiscal year 2023 budget of $9.5 billion, NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and institutions. Each year, NSF receives more than 40,000 competitive proposals and makes about 11,000 new awards. Those awards include support for cooperative research with industry, Arctic and Antarctic research and operations, and U.S. participation in international scientific efforts.

mail icon Get News Updates by Email 

Connect with us online
NSF website: nsf.gov
NSF News: nsf.gov/news
For News Media: nsf.gov/news/newsroom
Statistics: nsf.gov/statistics/
Awards database: nsf.gov/awardsearch/

Follow us on social
Twitter: twitter.com/NSF
Facebook: facebook.com/US.NSF
Instagram: instagram.com/nsfgov