text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 07-109
Volcanic Activity Key to Oxygen-rich Atmosphere

Activity contributed to rise of complex biological forms

submarine volcano

Artist's conception of a submarine volcano erupting.
Credit and Larger Version

August 29, 2007

Next time you catch a breath, be thankful, for a change, that the Earth's surface is dotted with volcanoes.

National Science Foundation-funded research published this week in the journal Nature indicates that billions of years ago, when the Earth was home largely to undersea volcanoes, some previously unknown agent was removing the gas.

The researchers suggest that mixture of gases and lavas produced by submarine volcanoes scrubbed oxygen from the atmosphere and bound it into oxygen-containing minerals.

Lee R. Kump, a professor of geosciences at Penn State University, working with a colleague at the University of Western Australia, looked at the geologic record from the Archaean--a geologic period from 3.8 to 2.5 billion years before the present day--and the Palaeoproterozoic-- geologic era immediately following that featured profound global change that included the breakup and formation of two supercontinents. They found that in the Archean there was a dearth of terrestrial volcanoes, while in the Palaeoproterozoic, although submarine volcanoes continued to be common, the population of terrestrial volcanoes increased dramatically.

"The rise of oxygen allowed for the evolution of complex oxygen-breathing life forms," Kump said.

Terrestrial volcanoes could become much more common because land masses stabilized and the current system of tectonics regime took shape.

Because submarine volcanoes erupt at lower temperatures than terrestrial volcanoes, they are more efficient at converting--or "reducing"--oxygen. As long as the reducing ability of the submarine volcanoes was larger than the amounts of oxygen created, the atmosphere had no oxygen. When terrestrial volcanoes began to dominate, oxygen levels increased.

The change over time caused an atmospheric shift from oxygen-free to oxygen-rich, the researchers argue, with profound implications for life on the planet.

-NSF-

Media Contacts
Peter West, NSF, (703) 292-7761, pwest@nsf.gov
A'ndrea Messer, Penn State University, (814) 865-9481, aem1@psu.edu

Principal Investigators
Lee R. Kump, Penn State University, (814) 863-1247, kump@essc.psu.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Email this pagePrint this page
Back to Top of page