text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 08-008
Molecular Walker Takes Baby Steps

Locomotion of two-legged DNA walker holds promise for molecular machines

Molecular Walker

A molecular walker moves autonomously down a molecular track with five anchor sites.
Credit and Larger Version

January 17, 2008

Researchers at the California Institute of Technology report they are able to program the pathways by which DNA molecules self-assemble, and hence to engineer diverse dynamic functions at the molecular level.

"This capability is essential for something like the memory of a DNA computer, which would need large groups of molecules that can toggle from the on/off position in a fast and reliable fashion," said National Science Foundation (NSF) Program Manager Kathy Covert.

Researchers Peng Yin, Harry Choi, Colby Calvert and Niles Pierce, who are funded by NSF, report their research results in the Jan. 17 issue of Nature. To illustrate their approach for encoding self-assembly and disassembly pathways into DNA sequences, the researchers experimentally demonstrated the locomotion of a two-legged DNA walker that moves along a DNA track without human intervention.

Scientists are working to develop dynamic molecular systems for therapeutic, biosensing, and other applications. "Exploiting self-assembly is essential to constructing a molecule with the features we want it to have," Covert said.

This research was supported by NSF continuing grant #0533096 for collaborative research managed by the Chemical Bonding Center for Molecular Cybernetics sponsored by Columbia University. Led by Principal Investigator Milan Stojanovic, the center's goal is to produce synthetic molecular machines powered by molecular bond formation.

Luis Echegoyen, director of the NSF Division of Chemistry, said "this is one excellent example of the scientific outcome of synergistic activities developed within the CBC program. We are confident that similarly significant work derived from interdisciplinary research in CBCs will continue to emerge."

-NSF-

Media Contacts
Diane Banegas, National Science Foundation, (703) 292-4489, dbanegas@nsf.gov

Program Contacts
Katharine Covert, National Science Foundation, (703) 292-4489, kcovert@nsf.gov

Principal Investigators
Niles A. Pierce, California Institute of Technology, (626) 395-8086, niles@caltech.edu

Related Websites
Pierce Lab Home Page: http://www.piercelab.caltech.edu/

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Email this pagePrint this page
Back to Top of page